Conceptual approach to calculus in teacher education: Examples using interactive technology
Main Article Content
Abstract
Calculus is a powerful tool for solving problems involving change, variation, and accumulation. Successful students acquire a mastery of a number of techniques for deriving and integrating, and develop problem-solving skills. However, the procedures are often not accompanied by a solid conceptual understanding. Even successful students often have trouble explaining what the concepts of limit, derivative, and integral mean and how they relate to each other. For example, recent studies show that calculus students have many misconceptions about the concept of derivative at a point and derivative function In this article we present activities using interactive technology with prospective mathematics teachers in different courses at the University of Delaware.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Cory, B. L. (2009). Visualizing the limits of sequences [versión electrónica].
Cory, B. L. (2010). Bouncing balls and graphing derivatives. Mathematics Teacher, 104(3), 206-213.
Cory, B. L., & Garofalo, J. (2011). Using dynamic sketches to enhance preservice secondary mathematics teachers' understanding of limits of sequences. Journal for Research in Mathematics Education, 42(1), 65-96.
Cory, B. L. & Smith, K. W. (2011). Delving into limits of sequences. Mathematics Teacher, 105(1), 48-55.
Edgerton, H. E. y Killian, J. R. (1979). Moments of vision: The stroboscopic revolution in photography. Cambridge, MA: MIT Press.
Flores Peñafiel, A. (2014). Ayudando a futuros profesores a mejorar la comprensión conceptual del cálculo. En C. A. Cuevas, y F. Pluvinage (Eds.), La enseñanza del cálculo diferencial e integral: Compendio de investigaciones y reflexiones para profesores, formadores e investigadores en matemática educativa. México: Pearson.
Flores Peñafiel, A., Park, J. & Sherman, M. (2014). Derivadas en varios puntos: Un paso importante entre la enseñanza de los conceptos de derivada en un punto y de función derivada. Eureka, 31(abril), 40-56.
Grabiner, J. V. (2005). The origins of Cauchy’s rigorous calculus. New York: Dover.
Grabiner, J. V. (1983). Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematical Monthly, 90(3), 185-194.
Hitt, F. y Dufour, S. (2014). Un análisis sobre la enseñanza del concepto de derivada en el nivel preuniversitario, del rol de un libro de texto y su posible conexión con el uso de tecnología. En C. A. Cuevas, A. y F. Pluvinage (Eds.), La enseñanza del cálculo diferencial e integral: Compendio de investigaciones y reflexiones para profesores, formadores e investigadores en matemática educativa. México: Pearson.
Hughes-Hallett, D., Gleason, A. M., McCallum, W. G., et al. (2010) Calculus: single and multivariable. New York: Wiley.
Kline, M. (1967). Calculus. New York: Wiley. (Reimpreso 1998).
Medin, D. (1989). Concepts and conceptual structure. American Psychologist, 44(12), 1469-1481.
Moreno Armella, L. (2014). Intuir y formalizar: Proceso coextensivos. En Ávila, A. (Ed.). Educación Matemática 25 años (p. 185-206). México: Sociedad Mexicana de Investigación y Divulgación de la Educación Matemática.
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
National Research Council (2013). The Mathematical sciences in 2025. Washington, DC: The National Academies Press.
Park, J. (2011). Calculus instructors’ and students’ discourses on the derivative. Tesis de doctorado no publicada. Michigan State University.
Park, J. (2013). Is the derivative a function? If so, how do students talk about It? International Journal of Mathematics Education in Science and Technology, 44(5), 624-640.
Park, J. y Flores (2012). Transition from derivative at a point to derivative function. En L. R. Van Zoest, J.– J. Lo, y J. L. Kratky (Eds.). Proceedings of the 34th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 159-166). Kalamazoo, MI: Western Michigan University.
Skemp, R. R. (1987). Relational understanding and instrumental understanding. En R. R. Skemp, The psychology of learning mathematics (pp. 152-163). Hillsdale, NJ: Erlbaum.
Stewart, J. (2010). Calculus. Pacific Grove, CA: Brooks/Cole Cengage Learning.
Strang, G. (1991). Calculus. Wellesley, MA: Wellesley-Cambridge Pr.
Zandieh, M. (2000). A Theoretical framework for analyzing student understanding of the concept of derivative. En E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education, IV, p 103-127. Providence, RI: American Mathematical Society.