An alternative to work on mathematical thinking through modeling at the high school level

Main Article Content

Mónica del Rocío Torres Ibarra
Johan David Gallego Guzmán
Nancy Janeth Calvillo Guevara

Abstract

The objective of this work have a proposal to promote transversality between mathematical thoughts through mathematical modeling within the framework of the new Mexican school for the upper secondary level. The resolution of a population problem based on the Fibonacci Series is used as a basis, with the intention of interacting between topics such as functions, variation, graphing and.  The proposal was validated with five students from the Bachelor's Degree in Mathematics at the Autonomous University of Zacatecas. The results revealed that when faced with a problem situation, which is presented with a simulator, students are able to involve all the pillars of mathematical thinking in a transversal way and model the problem to reach a solution

Article Details

How to Cite
Torres Ibarra, M. del R., Gallego Guzmán, J. D., & Calvillo Guevara, N. J. (2025). An alternative to work on mathematical thinking through modeling at the high school level. El cálculo Y Su enseñanza, 20(2), 67–86. Retrieved from http://recacym.org/index.php/recacym/article/view/225
Section
Teaching proposals

References

Bacaër, N., Bravo, R. y Ripoll, J. (2008). Breve historia de los modelos matemáticos en dinámica de poblaciones. Traducción al español de Histories de mathématiques et de populations, Cassini, Paris, 2008. http://www.ummisco.ird.fr/perso/bacaer/BreveHistoria2.pdf

Blum, W. y Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects. State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68 https://link.springer.com/article/10.1007/bf00302716

Mancera, G. y Camilo, F. (2022). Decantando las posibilidades de la modelación matemática desde nuestras prácticas pedagógicas e investigativas. Góndola, enseñanza y aprendizaje de las ciencias, vol. 18, núm. 1. https://doi.org/0.14483/23464712.18338

Ministerio de Educación Nacional [MEN] (1998). Matemáticas en Lineamientos curriculares. MEN y Cooperativa Editorial Magisterio, Bogotá.

Shiguay, G., Hu, G. y De la Cruz, R. (2022). El Pensamiento Matemático: los 5 pilares de la formación docente en ciencias. Horizontes. Revista de Investigación en Ciencias de la Educación. https://doi.org/10.33996/revistahorizontes.v6i23.371

Secretaria de Educación Pública [SEP]. (2024). Progresiones de aprendizaje del recurso sociocognitivo de Pensamiento Matemático. https://educacionmediasuperior.sep.gob.mx/work/models/sems/Resource/13516/1/images/Documento%20progresiones%20-%20Pensamiento%20matem%C3%83%C2%A1tico.pdf

PhET Interactive Simulations (2024, Mayo). University of Colorado Boulder, bajo licencia CC- BY-4.0 CC-BY-4.0 https://phet.colorado.edu/es/simulations/natural-selection

Zaldívar, J., Quiroz, S., & Medina, G. (2017). La modelación matemática en los procesos de formación inicial y continua de docentes. IE Revista de Investigación Educativa de la REDIECH, 8(15), 87-110. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-85502017000200087