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Resumen.Las matemáticas son a menudo vistas como una asignatura muy específica, 

ya sea por los estudiantes, los padres, los medios de comunicación o incluso los pro-

pios matemáticos. En muchos contextos, las matemáticas son temidas y vistas como 

una materia de selección, desconectado de aplicaciones interesantes de la vida real. 

Además, la estructura de las instituciones de enseñanza, en muchos casos, hace muy 

difícil la colaboración entre profesores de diferentes disciplinas. Al mismo tiempo, 

las matemáticas son cada vez más invisibles en la vida cotidiana, ya que la alta tecno-

logía tiende a ocultar las matemáticas necesarias para su creación en sofisticadas ca-

jas negras. En consecuencia, es todo un reto dar una respuesta adecuada a quienes, 

legítimamente, se preguntan para qué sirven las matemáticas. Nuestra propuesta en 

este trabajo es ver cómo las matemáticas en los diferentes currículos están realmente 

conectadas con otras disciplinas y hacer propuestas para hacer esta conexión más 

eficiente en beneficio tanto de las matemáticas como de otras materias. Los resulta-

dos que aquí se presentan provienen de diferentes trabajos de investigación que lide-

ramos en relación con la física y la economía.   

 

Palabras clave: matemáticas en otras disciplinas, física, economía. 

Abstract. Mathematics is often seen as a very specific subject, either by students, 

parents, media or even mathematicians themselves. In many contexts, mathematics is 

feared and seen as a subject for selection, disconnected from interesting applications 

to real life. Moreover, the structure to teaching institutions, in many cases, makes the 

collaboration between teachers from different disciplines very difficult. At the same 

time, mathematics is more and more invisible in everyday life, since high technology 

tends to hide the mathematics necessary for its creation in sophisticated black boxes. 
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As a result, it is quite a challenge to give an adequate answer to those who, legiti-

mately, wonder what mathematics is useful for. Our propose in this paper is to see 

how mathematics in different curricula is actually connected to other disciplines and 

to give propositions to make this connection more efficient for the benefit of both 

mathematics and other subjects. The results presented here emerged from different 

research works that we lead in relation to physics and economics.   

 

Keywords: mathematics in other disciplines, physics, economics. 

 

 

1. Introduction. 

Mathematics is often seen as a very specific subject, either by students, 

parents, media or even mathematicians themselves. In many contexts, 

mathematics is feared and seen as a subject for selection, disconnected 

from interesting applications to real life. Moreover, the structure of teach-

ing institutions, in many cases, makes the collaboration between teachers 

from different disciplines very difficult. At the same time, mathematics is 

more and more invisible in everyday life, since high technology tends to 

hide the mathematics necessary for its creation in sophisticated black 

boxes. As a result, it is quite a challenge to give an adequate answer to 

those who, legitimately, wonder what mathematics is useful for.  

Our purpose in this paper is to see how mathematics in different curricula 

is actually connected to other disciplines and to give propositions to make 

this connection more efficient for the benefit of both mathematics and 

other subjects. The results presented here emerged from different research 

works that we lead in relation to physics and economics. 

After a short introduction presenting the situation in France, we will give 

two kinds of examples: 

 - In the context of French upper secondary scientific education: the 

use of vectors in physics and the connection between the notions of trans-

latory and rotating movements in physics and the notions of translation 

and rotation in mathematics. 

 - In the context of French upper secondary and university education 

specialised in economics: the use of matrices for linear models of produc-

tion and the use of functions, and especially of the concept of derivative 

and its relation to the notion of marginality in economics.  
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Our study reveals that, most often, teachers know very little about other 

subjects, even in relation to their own subject. Mathematics teachers do 

not want to get involved in too specialised applications while physics or 

economics teachers send their students back to their mathematics teacher 

for explanations on the use of mathematics in their field. As a result, stu-

dents are used to seeing mathematics and other subjects as disconnected. 

This is reinforced by cultural differences, especially visible in the use of 

vocabulary or recipes that create artificial gaps between different disci-

plines. 

2. The French context 

Mathematics teaching in France has been marked by Bourbaki and the reform 

of modern mathematics. Even though a counter-reform took place about 

twenty years ago, French tradition tends to favour abstract and pure mathe-

matics, rather than applications. However, due to different factors, among 

which social pressure and disinterest of students for mathematical studies 

have played an essential role, many mathematicians have now realised that 

mathematics teaching should give more space to applications and modelling 

in relation to other disciplines. Changes have then been implemented in cur-

ricula and syllabi, yet, with varied success.  

One important feature of these changes concerns a global reform of the edu-

cational system with the implementation of new pedagogical devices proper 

to foster (impose) more inter-relations between different subjects. Devices 

have been introduced at different level of education. In lower secondary edu-

cation, Itinéraires De Découvertes (IDD) is a specific time allotted to a class 

in order to work collectively on a multi-disciplinary subject, while in upper 

secondary education Travaux Personnels Encadrés (TPE) are projects led by 

small groups of students involving connections between at least two different 

disciplines. These projects are supervised by two teachers of different disci-

plines. In vocational education, Parcours Pluridisciplianires à Caractère 

Professionel (PPCP) concerns a project over a whole year involving a class or 

the whole school. Its goal is to study a professional problem according to dif-

ferent aspects in relation with different disciplines taught during the year. The 

necessity to implement these devices in all schools is part of the national cur-

riculum. Teachers generally reacted favourably to these new propositions and 

many of them tried their best. However, many difficulties made things less 

successful than they could have been. It would be too long here to analyse 
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these difficulties in detail, but they can be classified in two different catego-

ries: 

• Structural difficulties due to a rigid centralised educational system, in 

which local initiatives are difficult 

• Lack of training and cultural gaps between teachers of different disci-

plines. 

Another feature of these changes concerns mathematical curricula. Previously 

mathematical curricula in upper secondary education were mostly designed 

from top to bottom. This means that after the curriculum for the scientific sec-

tion was decided, the curricula for other sections were designed by dropping 

some parts of the scientific curriculum, in accordance with the time devoted 

to mathematics and the presumed lower ability of students in the different 

sections. In the late 80s, it was decided to design a curriculum specific for 

each section, in accordance with students’ specialisation.  

After this reform, the mathematical curriculum of the social and economic 

sciences (ES) section was designed in order to introduce more applications to 

economic and social sciences. In this sense, some parts of the curriculum 

were devoted to economic functions, marginality, elasticity, logarithmical 

derivative, percentage, statistics, etc. (see Gasquet, 1994 and Gasquet and. 

Chuzeville, 1994). More recently some notions about matrices and graph the-

ory have been introduced. Therefore, according to official guidelines, the 

mathematical teaching in the ES section of upper secondary school should be 

more oriented towards applications in economic and social sciences and 

mathematical modelling. However, mathematics teachers were not prepared 

to this sort of change, and found it difficult to cooperate with their colleagues 

teaching economic and social sciences (due to a cultural gap). Our investiga-

tions, as well as several indicators, show that the success of this reform has 

therefore been limited by institutional and cultural constrains, this being rein-

forced by the absence of any specific training. For instance, in the recent ped-

agogical device of TPE (see above) very few projects involving mathematics 

and economic and social sciences emerged. In the ES section, a vast majority 

of projects involves economic and social sciences with history and geogra-

phy, and when mathematics is involved, it is mostly for the use of statistical 

tools. 
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At the same time, in the mathematical curricula of all sections, the teaching of 

statistics has gained an increasing importance. The curriculum is not reduced 

to descriptive statistics, but also includes a component of inferential statistics 

through the notion of fluctuation of sampling. For each part of the syllabus, 

some topics are proposed for specific study, teachers being asked to select 

some of these, according to their students’ particular interests. This change 

offered a possibility for less abstract and traditional mathematics. 

More recently, general instructions have been given in all mathematical cur-

ricula in order to favour applications to different disciplines and discussions 

about modelling as often as possible. Again, these instructions have had dif-

ferential effects and varied success. For instance in the curriculum of the sci-

entific (S) strand, the exponential function was traditionally introduced as the 

inverse of the logarithm function. It is now demanded to introduce the expo-

nential function at the beginning of the academic year, for improving the co-

herence between mathematics teaching and sciences teaching. The introduc-

tion of the exponential function is made, starting from the differential equa-

tion f'=kf, whose study “can be justified by one or two examples, for instance 

radioactivity treated in physics, or by the search for differentiable functions f 

such that f(x+y)=f(x)f(y)”. In order to support this introduction, the accompa-

nying document presents a text, which is the fruit of a common work of the 

groups of experts in mathematics, physics and biology. 

As we have seen, mathematical teaching in France tends to be less abstract 

and to present more applications and modelling. We will now present exam-

ples of analyses and experiments we have made in two different types of re-

search work. 

2.1 Examples of relations with physics 

Vectors and forces 

One interesting bridge between mathematics and physics in secondary educa-

tion concerns the relation between vectors and forces. The notion of vector 

emerged in the middle of the nineteen century from different concerns involv-

ing purely mathematical problems as well as questions in physics (mostly 

electromagnetism) (Crowe 1967 and Dorier 2000). Vector is therefore by na-

ture a concept in relation to both disciplines. How is this duality seen through 

teaching in mathematics and physics? 
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In mathematics, very few examples from physics are presented. Vectors re-

main essentially a tool for geometry and the teaching tends to focus on their 

algebraic properties. On another hand, vectors are a model of the concept of 

force in physics. However, various studies have shown that, although a force 

is characterised by a magnitude and a direction, tasks given in physics focus 

on the magnitude only (Genin et al. 1987 and Lounis 1989). Moreover a force 

is also attached to a point where the force is applied while a mathematical 

vector is invariant by translation. This duality is a source of difficulty for stu-

dents. 

We will not present here all the results of our analyses (Ba 2008, Ba et Dorier 

2007 and to appear), but we will focus on a specific situation. This concerns a 

problem in physics (dynamics) designed in order to make the determination 

of the direction of a force essential for its solution.  

 

Here is the text of the problem: 

 

 





Ceiling

Horizontal

Magnet  

 An iron small ball (comparable to 

a point M) with mass m is hung 

to the ceiling by a thread (whose 

mass will be neglected). 

A magnet attracts the ball, the 

direction of the force makes an 

angle  under the horizontal line 

(see drawing) and its magnitude 

is F. 

When in equilibrium, the thread 

makes an angle  with the verti-

cal (see drawing) 

The only forces are: the weight of 

the ball, the attraction of the 

magnet and the tension of the 

thread. 

 

Figure 1 
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Data: m=200g , =30° , F=2N, take g=10N/g. 

1. Write the equilibrium equation. 

2. Represent with the scale (1cm=1N) the forces in action. 

3. What are the characteristics of the tension of the thread? 

We now give the answers: 

1. The equilibrium equation is given by the first fundamental law of dy-

namics: 

 

F  +

 

P  + 

 

T  = 

 

0  

2.  

 
 Figure 2 

3.  With use of relations in an isosceles triangle, it is easy to see that 

 

T  

makes an angle of 30° with the vertical and has a magnitude of 2

 

2 N. 

The interesting point in this problem, is that in question 2, one has to draw 

 

F  

and 

 

P first in order to draw 

 

T  as the opposite of their sum. Then 

 

T  gives the 

direction of the thread. 

Ceiling 

Horizontal M 

30° 

30° 

30° 

T 

P 

F 

P+F 
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Therefore in order to draw the thread, one has to use the sum of two vectors, 

which is the essential key to the problem. 

However, this task is problematic in the context of physics. Indeed, the con-

struction of question 2 has to take place in a mathematical model, which is 

not reality. Moreover, in this model the point where the thread is attached to 

the ceiling can only be determined at the end of the process. Once this theo-

retical construction is made, one can come back to the drawing representing 

the reality and use the results of question 3 to represent the situation starting 

with the fact that the thread makes an angle of 30° with the vertical. 

We have submitted this problem both to students and teachers in Première S 

(second scientific class of upper secondary school, age 15). 

The students, tested in the physics class, did not have any problem with ques-

tion 1. But they met real difficulties in question 2. They could not transfer the 

problem into the mathematical model. As a matter of fact, they did not see 

that there were two levels in the representation of the situation. On the other 

hand different studies show that students at this level have acquired sufficient 

knowledge about vectors to be able to draw the sum of two vectors and to 

answer questions like question 3, when given in a purely geometrical setting. 

This shows that students have sufficient competence in mathematics but are 

not able to mobilise it when necessary in physics. Moreover, they do not iden-

tify the mathematics at stake in a physics problem. The difficulty here is typi-

cal of modelling situations. 

We asked physics teachers if they would give such a problem to their stu-

dents, and if so what difficulty they think would appear. Massively, they ad-

mitted that this problem was close to a typical situation of dynamics, but at 

the same time they felt uncomfortable with the formulation. They did not be-

lieve that their students would handle the geometrical construction. For the 
solving of question 3, they also massively prefer a solution using projections 

on two orthogonal axes, which is a technique widely used in physics. 

Mathematics teachers, on the other hand, would not be ready to give such a 

problem to their students because they do not consider it as part of mathemat-

ics. Moreover, the physics notions at stake are only taught one or two years 

after the sum of vectors is studied in mathematics. 
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This problem appears to be typical of the difficulty in building a bridge be-

tween mathematics and physics even when two notions are naturally related 

like vectors and forces. Teachers of both disciplines do not want to take 

charge of the link between the two and students cannot transfer their 

knowledge from one to the other. Only a joint effort from teachers of both 

disciplines can solve the problem. We are now working in this direction try-

ing to build a teaching sequence involving the teachers of the two disciplines. 

However, we not only have to fight against reluctance to collaboration, but 

also to solve some difficult epistemological questions regarding modelling. It 

is also necessary to reduce the cultural gap between the two disciplines. 

 

3. Translatory and rotating movement and translation and rotation 

Another part of physics related to mathematical notions concerns translatory 

and rotating movements. The question is quite different from the previous 

case of vectors and forces. Indeed, here, the relation between physics and 

mathematics seems more obvious, since the same terms are used but, on the 

other hand, it is more mysterious, at least for what concerns translation. In-

deed, it is well known that geometrical transformations are cognitively at-

tached to dynamical representations. A mathematical transformation only 

takes into account an initial and a final state (i.e. an element and its image), 

but one often implicitly attaches an idea of movement between those two 

states. In this sense, the effect of a rotation on a geometrical object can be 

seen as a rotating movement of the object. This representation of a geomet-

rical rotation is coherent with the concept of rotating movement in physics. 

However it is quite different with translation, since the dynamical representa-

tion of the translation of a geometrical object is attached to rectilinear transla-

tory movement only and does not take into account all the other types of 

translatory movement studied in physics.  

Indeed, in physics an object is said to have a translatory movement when any 

segment attached to the solid remains parallel to itself during the movement 

(def.1). Therefore, the trajectory of the object can be non-rectilinear, but fol-

low any type of curve: 
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Figure 3 

Experiments have been made involving mathematics and physics teachers 

about their representation of a translatory movement, and it shows that most 

mathematics teachers only think of rectilinear translatory movement and are 

totally puzzled when physics teachers try to explain what is a translatory 

movement by showing a movement with their hand following a non-

rectilinear trajectory, yet with the hand remaining parallel to itself (Gasser 

1996). 

Another puzzling question is that most French physics textbooks (at the level 

of Première S), in the chapter introducing the definition of a translatory 

movement as given above, also give illustrations with objects on which vec-

tors are drawn (like on the figure above), although the definition only mention 

segments. Indeed, the objects are always supposed not to change their shape 

during the movement, therefore a segment [M,N] on the solid cannot change 

its length. In a translatory movement any segment remains parallel to itself. 

So vector   

 

MN  can have only two opposite directions, and cannot change 

length. Thus, according to a basic continuity principle, it is clear that vec-

tor  

 

MN cannot change its direction (because it would have to go from one di-

rection to the opposite without being able to have any intermediary positions 

in between). Having the same direction and the same length it, therefore, re-

mains identical.  

In other words, a translatory movement can be characterised by the fact that 

every vector on the solid remains identical (def.2). 
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One can wonder why such a formulation is never used in physics, while vec-

tors appear in practically all drawings. Certainly, the fear for being too ab-

stract is the main reason. 

This is the first proof of the distance separating physics and mathematics. Let 

us now see what the connection between translatory movements and mathe-

matical translation can be and why this is neither explicit in physics nor in 

mathematics teaching.  

Let us introduce the time in the notation, what physics teachers usually do not 

do at this level in order to avoid abstraction and formal notation. For each 

value t of [0,T] (the duration of the movement) and any point M of the solid 

S, one calls M(t) the position of the point M at time t. Then the definition of a 

translatory movement becomes:  

 

 

A solid S has a translatory movement if, for any t, t’ of [0,T] 

and M, N of S, ( ) ( ) ( ') ( ')=M t N t M t N t  (def.3) 

 

In terms of translation the condition can be expressed by: 

A solid S has a translatory movement if, for any M, N of S, there is a 

translation τMN (independent of the time) such that for any t of [0,T] : 

τMN (M(t)) = N(t). (def.4) 

 

Of course τMN is the translation of vector   

 

MN . This is a first characterisation 

of a tanslatory movement using the mathematical notion of translation. 

Moreover, if one applies what is sometimes known as the parallelogram rule 

(i.e. ( ) ( ) ( ') ( ')=M t N t M t N t  is equivalent to : ( ) ( ') ( ) ( ')=M t M t N t N t ), 

one gets another characterisation of a translatory movement using the mathe-

matical notion of translation: 

S has a translatory movement if, for any t, t’ of [0,T] there exists a 

translation τtt’ (independent of the point) such that for any M of S : 

τtt’(M(t)) = M(t’). (def.5) 
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The difficulty here is that this translation does not give any information about 

the trajectory followed by the solid S between t and t’. 

Finally, if, for distinct t and t’, one divides the preceding equality by (t’-t), 

one gets: 

tt’

)M(t)M(t’

−
 = 

tt’

)N(t)N(t’

−
 

Which becomes, when t’ tends to t:   

 

VM (t) = VN (t) , which means that at any 

time during the movement all points have the same velocity. 

Reciprocally, by integrating between t and t’ the equality of velocity, one gets 

that:   

 

M(t)M(t' )=  

 

N(t)N(t' )). 

 

This gives another characterisation of a translatory movement that students 

see in physics without any proof: 

S has a translatory movement if, at any time, all points have the 

same velocity. (def.6) 

In the teaching of physics in Première S, only definitions 1 and 6 are given to 

the students and no attempt to connect this to mathematical translations is 

made, either in books or by teachers (according to a questionnaire sent to a 

large number of teachers). Moreover, physics teachers either do no care about 

this connection or simply believe that translation and translatory movement 

are the same thing, while most mathematics teachers reduce translatory 

movement to the rectilinear case, in accordance with their dynamical repre-

sentation of geometrical transformations.  

Most students are used not to try to make bridges between physics and math-

ematics and therefore use the same word in two different disciplines without 

trying to find a connection. However, they have difficulties with translatory 

movements. They often get confused, for instance, between circular translato-

ry movement and rotating movement. They also have difficulties in non-

“classical” examples in making their definition operational when trying to 

prove that a given movement is translatory, while they have the mathematical 

skills at hand (Ba, 2003).  
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This situation is not satisfactory. Especially since students have all the neces-

sary knowledge at hand to be able to understand with a minimum of time and 

work the different connections we have briefly established above. Again, the 

question is to know who, among the mathematics teacher and the physics 

teacher, should be in charge of making the connection explicit. Making this 

connection explicit would benefit physics teaching, of course, since it helps 

clarifying the notion of translatory movement, but also mathematics teaching, 

since it provides a use of vectors and translations in a rich context, with a 

challenging use of notations. For these reasons, we think that this should be a 

joint effort, either in parallel, in the mathematics class and the physics class, 

or even better, in a common session with both teachers. In a research work in 

progress (Ba, 2003) we are working on the design of such a teaching se-

quence and a training device in order to make a mathematics teacher and a 

physics teacher work together to try it out in their classes. The implementa-

tion will then be analysed with regard to students’ work and teachers’ direc-

tion of the situation. 

3.1 Examples of relations with economics 

The following examples are taken from our teaching (Dorier and Duc-Jacquet 

1996) at the first year of university in Grenoble to students majoring in eco-

nomics. The level of mathematical training in economics curricula in French 

universities is quite varied. Although it is of a very high standard in some 

prestigious universities, in the context of our experiment, it is much lower 

since our students are not specialised in quantitative methods. The first teach-

ing sequence of the year is devoted to a situation designed to introduce some 

ideas about mathematical modelling (Dorier, 2006). 

4. Matrices and linear models of production 

Matrices are tools for linear models of production in economics. However, 

students usually find it difficult to deal with such formal objects and are easi-

ly overwhelmed by new definitions and rules of matrix algebra. The context 

of an example from economics may help them overcome some of these diffi-

culties. In this section, we present an introduction to matrices using an ele-

mentary example from economics. This approach experienced several times 

with our students has proven to be efficient. It allows an introduction to ma-

trices as objects for stocking data in a form that helps finding the pertinent 

numerical value but also facilitates computations in the model. 
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The example is based on an elementary linear model of production: 

A factory makes two kinds of threads T1 and T2 (the outputs) measured in 

reels using wool, acrylic, work and energy (the inputs) measured in, respec-

tively, kg, kg, minutes and watts. 

The production is supposed to be linear, i.e. the quantity of inputs necessary 

is proportional to the quantities of output produced. 

- In order to produce one reel of thread T1, one uses 1kg of wool, 0.6kg of 

acrylic, 1hour of work and 200w of energy. 

- In order to produce one reel of thread T2, one uses 0.8kg of wool, 0.7kg of 

acrylic, 50mn of work and 170w of energy. 

What are the quantities of inputs necessary to produce 120 reels of T1 and 80 

reels of T2? 

 

 

Answering this question involves several computations. We give below the 

kind of reasoning necessary to find the quantity of wool necessary for the 

production : 

- In order to produce 120 reels of T1 one needs 120x1=120kg of wool.  

- In order to produce 80 reels of T2 one needs 80x0.8=64kg of wool. 

 

So altogether, one needs 120+64=184kg of wool. 

One needs to compute similar figures in order to get the quantity of the other 

inputs. After letting students manage these computations, blindly, one can ask 

them if they can identify some recurrent figures in the computations. This 

leads to the result that in order to find the quantity of each input, one needs to 

multiply the coefficients for T1 by 120, the coefficient for T2 by 80 and add 

the two results.  

Once students have recognised this pattern, the teacher can explain that these 

computations can be formalised via matrices. 

At first one introduces the matrix of production, which recapitulates in col-

umns the quantities of inputs necessary for the production of one unit of each 

output: 
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T1            T2 

    

 

A =  

1

0.6

60

200

0.8

0.7

50

170

 

 

 
 
 
 

 

 

 
 
 
 

wool  (kg)

acrylic  (kg)

work  (mn)

energy  (w)

 

It is important here to explain that putting the outputs in columns and the in-

puts in rows is purely conventional (arbitrary) but that everybody has to use 

the same convention. 

 

 

 

 

 

Then the computations used in order to determine the quantity of inputs can 

be symbolised by the multiplication of A by the uni-column matrix of produc-

tion: 

    

 

 

1

0.6

60

200

0.8

0.7

50

170

 

 

 
 
 
 

 

 

 
 
 
 

 x  
120

80

 

 
 

 

 
  =  

184

128

11  200

37  600

 

 

 
 
 
 

 

 

 
 
 
 

 

wool  (kg)

acrylic  (kg)

work  (mn)

energy  (w)

 

This is a first step, that allows us to introduce the notation and an elementary 

example of multiplication, illustrating the ‘multiplication of a row by a col-

umn law’ in a context that gives meaning to students. In this approach, the 

matrix (of production) is not only a short presentation of data easy to grasp, 

but also a powerful computing tool. 

Then, one can make the situation more complex: 

The two kinds of thread are now used to make three kinds of material: M1, M2 and M3 

(the unit is a roll). 

The matrix of production is: 

 M1  M2  M3 

  

 

B  =  
 5.5    8    5  

  7     4   7.5

 

 
 

 

 
  
T1

T2

 

Give the matrix C of production of the three types of material in relation to the wool, the 
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acrylic, the work and the energy needed as inputs, without referring to the intermediary 

production of threads. 

Here again, one needs to compute the data in a quite complex way, where it is 

easy to see recurrent patterns. Once the students have computed these data 

blindly, the teacher can ask to make the patterns explicit. He can then help 

students recognise the ‘multiplication of a row by a column law’ and state the 

rule for the multiplication of two matrices. Indeed, the matrix C can be mod-

elled by the product AxB: 

  M1    M2    M3 

    

 

 

1

0.6

60

200

0.8

0.7

50

170

 

 

 
 
 
 

 

 

 
 
 
 

   
 5.5    8    5  

  7     4   7.5

 

 
 

 

 
  =  

11.1   11.2    11  

8.2    7.6    8.25

680   680   675

2290  2280  2275

 

 

 
 
 
 

 

 

 
 
 
 

wool  (kg)

acrylic  (kg)

work  (mn)

energy  (w)

 

In this presentation, the multiplication of two matrices is therefore introduced 

in a context that gives meaning to conventional rules that many students have 

difficulty to accept in a purely mathematical context. It does not mean that all 

difficulties are avoided, but, at least, students have a richer background, suit-

able to motivate their learning and, furthermore, to make memorisation more 

efficient. 

This presentation can also lead to an interpretation in terms of linear trans-

formations. Indeed, the first level of production can be modelled via a linear 

transformation 

f : q  R2 → q’ = f(q)  R4 

that gives the quantities q’ of inputs necessary for a production q of outputs. 

In other words, q represents the pairs of quantities of each thread to be pro-

duced and q’, the quadruplet of the quantities of wool, acrylic, work and en-

ergy necessary for this production. f is a linear transformation whose matrix is 

A.  

 Similarly, there is a linear transformation g, modelling the second level 

of production: 

g : p  R3 → q = g(p)  R2 
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that gives the couple of quantities q of each thread necessary for a production 

of the triplet of quantities p of each material. g is a linear transformation 

whose matrix is B. 

 In order to get the linear transformation that gives the quantities q’ of 

wool, acrylic, work and energy necessary for a production of the triplets of 

quantities p of each material, one needs to compose f and g: 

 

fog : p  R3 → q = g(p)  R2 
→ q’ = f(g(q))  R4 

fog  is a linear transformation whose matrix is the product C=AxB. 

This example shows that, sometimes, purely mathematical concepts can be 

introduced in a context situated outside mathematics (here economics), in 

which the interpretation in terms of the other discipline gives a richer ap-

proach, suitable not only to giving more motivation to students, but also a 

consistent meaning that helps learning. When introduced only with reference 

to mathematics, matrices and the product of matrices may be seen as formal 

objects with arbitrary rules, while in the context of linear models of produc-

tion, they appear as a suitable way to organise data referring to the model. 

 

5. The concept of derivative in relation to the marginal function and its 

link with the average function 

In economics, any economic function is related to two other functions: 

- the marginal function 

- the average function 

The marginal function is defined by economists as the function measuring the 

change of the original function when its variable increases by one unit. For 

instance, the marginal cost of production measures, at each level of produc-

tion, the increase of cost due to the production of one supplementary unit of 

output. Similarly, the marginal productivity measures the increase of produc-

tion due to the use of one supplementary unit of input.  

In other words, given any economic function f of the variable x (x being posi-

tive), the marginal function fm is such that for any x:  

fm(x) = f(x+1) - f(x) or fm(x) = ∆f(x), when ∆x = 1. 
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Like any economic function, the marginal function has a dimension. For in-

stance in the case of a cost of production, expressing a monetary value as a 

function of a quantity produced, the marginal cost expresses a monetary value 

per unit of quantity (e.g. euros per kg). Therefore the dimension of the mar-

ginal function is (dimension of f) per (dimension of x). This shows that in the 

relation above there is a hidden division, i.e.: fm(x) = 
  

 

f (x)

x
, when ∆x = 1. 

Economists explain that the marginal function can be replaced by the deriva-

tive: fm(x) = f’(x). This substitution is very practical, since mathematics offers 

a theoretical framework for the derivative. However, it remains quite myste-

rious how one goes from the economic definition of the marginal function to 

the concept of derivative. Neither economics teachers, nor mathematics 

teachers, when they have to do it, know how to make the connection clear to 

their students. Our investigations, with teachers of both disciplines in second-

ary education and our analyses of textbooks show that this connection is 

widely used but remains problematic. Indeed, this question is typical of the 

gap that exists between the two subjects. In mathematics, functions are formal 

objects and are not related to measures of quantities. Moreover, variations can 

be small or big but in the concept of derivative they are infinitesimal, ∆x 

tends to zero. In our problem, the key is a suitable choice of units. Indeed, for 

practical reasons, the units used for economic functions are such that quanti-

ties can be expressed by significant numbers, neither too small, nor too big. 

One would not choose a litre as a unit when dealing with problems involving 

production of petrol for instance, but rather a ton. Therefore, the units are 

usually chosen in such a way that a variation of one unit can be seen as a 

small variation. Under this condition, which is usually implicit, for ∆x = 1, 

  

 

f (x)

x
 is not very different from f ’(x) since ∆x is small. 

Obviously, in order to have a suitable explanation of the fact that the marginal 

function can be modelled by the derivative, one needs to take into account 

considerations from the economical reality (leading to a suitable choice of 

units) and from mathematics (for a small variation, the variation rate 
  

 

f (x)

x
 is 

close to its limit when ∆x tends to zero). If one does not refer to the two types 

of justification, one does not get a fully satisfactory explanation. 
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By definition, the average function measures the ratio of f(x) over x:  

fM(x) = 
  

 

f (x)

x
. 

For instance, the average cost of production measures, at each level of pro-

duction, the average cost of one unit of production or the average productivity 

measures the average quantity of output produced with one unit of input. Like 

the marginal function the average function has as its dimension: (dimension 

of f) per (dimension of x). 

Therefore, these two functions can be compared, and indeed, there are some 

interesting economic results in their comparison. The most classical of these 

is that when the marginal function is smaller than the average function, the 

average function decreases, and vice versa, when the marginal function is 

greater than the average function, the average function increases. Further-

more, when the two functions are identical, the average function has reached 

an optimum. 

This result can be illustrated by a very intuitive example. Let us consider a 

basket-ball team, and define f such that: 

f(n) = sum of heights of all n players. 

If a new player joins the team, his height is the marginal height fm(n). If he is 

taller than the average height of the team, the average height of the team will 

increase, if he is smaller, it will decrease, and if he has exactly the average 

height, the average height will remain identical. 

This example deals with discrete values of the variable, therefore it is not 

quite correct in terms of the model, yet, it gives an interesting intuitive illus-

tration of the theorem, easy to memorise. 

This theorem is taught in economics, using mathematical results on the deriv-

ative and illustrated with economic examples. The mathematical demonstra-

tion is simple; it lies on the following result, using the derivative of a quotient 

of two functions: 

  

 

fM
'
(x)  =  

f (x)

x

 

 
 

 

 
 

'

 =  
xf ' (x) − f (x)

x2
 =  

f ' (x) −
f (x)

x

x
 =  

fm (x) − fM (x)

x
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Since x is positive, the sign of the derivative of the average function is the 

same as the sign of the difference:  fm(x)- fM(x). The theorem can be then easi-

ly deduced from this result. 

However, an illustration, if not a proof, can also be given in a graphical con-

text. Indeed the derivative measures the slope of the tangent to the curve, and 

the average function measures the slope of segment [OM], where M is the 

point of the curve with abscissa x: M = (x, f(x)). 

 

Figure 4 

On this figure, we have represented a function f, and the corresponding mar-

ginal and average functions below. The graphs/curves representing fm and fM 

can be drawn by reading information from the graph of f.  

There are three specific points: A,B and C, on the curve representing f, corre-

sponding to the three points A’, B’ and C’ on the curve of fm and/or fM . 
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• A is an inflexion point of the curve of f, i.e. the tangent crosses the curve, 

which changes its concavity in A. This corresponds to an optimum (here 

a maximum) of the derivative (or the marginal) function.  

• B corresponds to the point, where the tangent to the curve representing f 

passes through O. Therefore, the marginal function equals the average 

function in b (abscissa of B’). The fact that the secant [OM] is tangent to 

the curve in B, also means that the slope of [OM] reaches its maximum 

in B. Therefore, the average function reaches its maximum in b, the ab-

scissa of B’ (or B). Before b, the slope of [OM] is smaller than the slope 

of the tangent, after b, it is bigger. Here, we have an intuitive graphical 

proof of the theorem of comparison between the marginal and the aver-

age functions.  

• C corresponds to the maximum of the function f, it marks the change of 

sign of f ’, the marginal function. 

With students entering university, majoring in economics, mathematics 

teachers can use the context presented here in order to make a rich activity 

dealing with basic notions about functions and the concept of derivative, us-

ing graphical, algebraic and formal aspects, in relation to an economic inter-

pretation. In France, the notion of derivative is taught in the last but one year 

of upper secondary school. However, very often, students entering university, 

especially if they do not come from the scientific section of upper secondary 

education, still have difficulty with this notion. The main idea here is to build 

bridges, not only between mathematics and economics but also between dif-

ferent settings at stake within mathematics. Several didactical studies have 

proven that cognitive flexibility is an important issue for the learning of 

mathematics. It is essential that students be able to interpret a result in graph-

ical, algebraic or formal settings and to make connections between these set-

tings. 

In our example, after introducing the notions of marginal and average func-

tions, in relation to the definitions seen in economics, with formal and alge-

braic mathematical interpretations, the teacher can start with the graphical 

representation, using a similar figure as above, asking the students to draw the 

shape of the curve representing the marginal and the average functions. The 

theorem on the comparison of the average and the marginal functions can be 

deduced from this specific example. Moreover, it can also be illustrated by 
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the example of the basket-ball team. Then, the formal algebraic proof can be 

requested from the students.  

We have experimented with such a didactical design several times with our 

students. It is striking how students who have a reputation for being reluctant 

to any formalism in mathematics are able to produce a correct formal proof of 

this theorem at the end of the instructional sequence. 

Like in the example with matrices, the economic context offers a rich back-

ground in order to work with mathematical concepts. It helps giving more 

meaning and making interesting connections. 
 

 

6. Conclusion 

As we said in the introduction, the teaching of mathematics is subject to a 

social pressure that requires more applications and raises issues about model-

ling. The outside world forces mathematics to come out of its ivory tower. 

This is true for all levels of education in any context. However, it is even 

more essential for students whose major interest is outside mathematics. It is 

not possible anymore for mathematicians to remain isolated, away from ap-

plications, in a position of superiority. This is the best thing that could have 

happened to mathematics, which needs to become more visible. Our belief is 

that mathematics will not sell its soul by getting more interested in other dis-

ciplines. We hope to have shown with the few examples that we have 

sketched in this short paper, that by connecting itself to outside contexts, 

mathematics can be taught in a richer way, without reducing the value of its 

concepts. As we have shown in various ways in our four examples, the con-

nection with other disciplines is also a way of making the formal aspect of 

mathematics accessible. Using a context issued from another discipline is not 

only a question of psychological motivation, but also an epistemological chal-

lenge. Indeed, using an example from another discipline, is not only a (fash-

ionable) way to motivate students, but it is also a way to present a richer con-

text where issues on the meaning of mathematics will automatically be ad-

dressed and questioned. This is not just an abdication of supremacy, but a 

humble recognition of the power of mathematics as a provider of models to 

other disciplines which has always been an essential part of its history. 
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