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Resumen.Las matematicas son a menudo vistas como una asignatura muy especifica,
ya sea por los estudiantes, los padres, los medios de comunicacion o incluso los pro-
pios matematicos. En muchos contextos, las matematicas son temidas y vistas como
una materia de seleccion, desconectado de aplicaciones interesantes de la vida real.
Ademas, la estructura de las instituciones de ensefianza, en muchos casos, hace muy
dificil la colaboracion entre profesores de diferentes disciplinas. Al mismo tiempo,
las matematicas son cada vez mas invisibles en la vida cotidiana, ya que la alta tecno-
logia tiende a ocultar las matematicas necesarias para su creacion en sofisticadas ca-
jas negras. En consecuencia, es todo un reto dar una respuesta adecuada a quienes,
legitimamente, se preguntan para qué sirven las matemadticas. Nuestra propuesta en
este trabajo es ver como las matematicas en los diferentes curriculos estan realmente
conectadas con otras disciplinas y hacer propuestas para hacer esta conexion mas
eficiente en beneficio tanto de las matematicas como de otras materias. Los resulta-
dos que aqui se presentan provienen de diferentes trabajos de investigacion que lide-
ramos en relacion con la fisica y la economia.
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Abstract. Mathematics is often seen as a very specific subject, either by students,
parents, media or even mathematicians themselves. In many contexts, mathematics is
feared and seen as a subject for selection, disconnected from interesting applications
to real life. Moreover, the structure to teaching institutions, in many cases, makes the
collaboration between teachers from different disciplines very difficult. At the same
time, mathematics is more and more invisible in everyday life, since high technology
tends to hide the mathematics necessary for its creation in sophisticated black boxes.
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MATHEMATICS IN ITS RELATION TO OTHER DISCIPLINES: SOME EXAMPLES RELATED TO
ECONOMICS AND PHYSICS

As a result, it is quite a challenge to give an adequate answer to those who, legiti-
mately, wonder what mathematics is useful for. Our propose in this paper is to see
how mathematics in different curricula is actually connected to other disciplines and
to give propositions to make this connection more efficient for the benefit of both
mathematics and other subjects. The results presented here emerged from different
research works that we lead in relation to physics and economics.

Keywords: mathematics in other disciplines, physics, economics.

1. Introduction.

Mathematics is often seen as a very specific subject, either by students,
parents, media or even mathematicians themselves. In many contexts,
mathematics is feared and seen as a subject for selection, disconnected
from interesting applications to real life. Moreover, the structure of teach-
ing institutions, in many cases, makes the collaboration between teachers
from different disciplines very difficult. At the same time, mathematics is
more and more invisible in everyday life, since high technology tends to
hide the mathematics necessary for its creation in sophisticated black
boxes. As a result, it is quite a challenge to give an adequate answer to
those who, legitimately, wonder what mathematics is useful for.

Our purpose in this paper is to see how mathematics in different curricula
is actually connected to other disciplines and to give propositions to make
this connection more efficient for the benefit of both mathematics and
other subjects. The results presented here emerged from different research
works that we lead in relation to physics and economics.

After a short introduction presenting the situation in France, we will give
two kinds of examples:

- In the context of French upper secondary scientific education: the
use of vectors in physics and the connection between the notions of trans-
latory and rotating movements in physics and the notions of translation
and rotation in mathematics.

- In the context of French upper secondary and university education
specialised in economics: the use of matrices for linear models of produc-
tion and the use of functions, and especially of the concept of derivative
and its relation to the notion of marginality in economics.
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Our study reveals that, most often, teachers know very little about other
subjects, even in relation to their own subject. Mathematics teachers do
not want to get involved in too specialised applications while physics or
economics teachers send their students back to their mathematics teacher
for explanations on the use of mathematics in their field. As a result, stu-
dents are used to seeing mathematics and other subjects as disconnected.
This is reinforced by cultural differences, especially visible in the use of
vocabulary or recipes that create artificial gaps between different disci-
plines.

2. The French context

Mathematics teaching in France has been marked by Bourbaki and the reform
of modern mathematics. Even though a counter-reform took place about
twenty years ago, French tradition tends to favour abstract and pure mathe-
matics, rather than applications. However, due to different factors, among
which social pressure and disinterest of students for mathematical studies
have played an essential role, many mathematicians have now realised that
mathematics teaching should give more space to applications and modelling
in relation to other disciplines. Changes have then been implemented in cur-
ricula and syllabi, yet, with varied success.

One important feature of these changes concerns a global reform of the edu-
cational system with the implementation of new pedagogical devices proper
to foster (impose) more inter-relations between different subjects. Devices
have been introduced at different level of education. In lower secondary edu-
cation, Itinéraires De Découvertes (IDD) is a specific time allotted to a class
in order to work collectively on a multi-disciplinary subject, while in upper
secondary education Travaux Personnels Encadrés (TPE) are projects led by
small groups of students involving connections between at least two different
disciplines. These projects are supervised by two teachers of different disci-
plines. In vocational education, Parcours Pluridisciplianires a Caractere
Professionel (PPCP) concerns a project over a whole year involving a class or
the whole school. Its goal is to study a professional problem according to dif-
ferent aspects in relation with different disciplines taught during the year. The
necessity to implement these devices in all schools is part of the national cur-
riculum. Teachers generally reacted favourably to these new propositions and
many of them tried their best. However, many difficulties made things less
successful than they could have been. It would be too long here to analyse
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these difficulties in detail, but they can be classified in two different catego-
ries:

e  Structural difficulties due to a rigid centralised educational system, in
which local initiatives are difficult

e Lack of training and cultural gaps between teachers of different disci-
plines.

Another feature of these changes concerns mathematical curricula. Previously
mathematical curricula in upper secondary education were mostly designed
from top to bottom. This means that after the curriculum for the scientific sec-
tion was decided, the curricula for other sections were designed by dropping
some parts of the scientific curriculum, in accordance with the time devoted
to mathematics and the presumed lower ability of students in the different
sections. In the late 80s, it was decided to design a curriculum specific for
each section, in accordance with students’ specialisation.

After this reform, the mathematical curriculum of the social and economic
sciences (ES) section was designed in order to introduce more applications to
economic and social sciences. In this sense, some parts of the curriculum
were devoted to economic functions, marginality, elasticity, logarithmical
derivative, percentage, statistics, etc. (see Gasquet, 1994 and Gasquet and.
Chuzeville, 1994). More recently some notions about matrices and graph the-
ory have been introduced. Therefore, according to official guidelines, the
mathematical teaching in the ES section of upper secondary school should be
more oriented towards applications in economic and social sciences and
mathematical modelling. However, mathematics teachers were not prepared
to this sort of change, and found it difficult to cooperate with their colleagues
teaching economic and social sciences (due to a cultural gap). Our investiga-
tions, as well as several indicators, show that the success of this reform has
therefore been limited by institutional and cultural constrains, this being rein-
forced by the absence of any specific training. For instance, in the recent ped-
agogical device of TPE (see above) very few projects involving mathematics
and economic and social sciences emerged. In the ES section, a vast majority
of projects involves economic and social sciences with history and geogra-
phy, and when mathematics is involved, it is mostly for the use of statistical
tools.
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At the same time, in the mathematical curricula of all sections, the teaching of
statistics has gained an increasing importance. The curriculum is not reduced
to descriptive statistics, but also includes a component of inferential statistics
through the notion of fluctuation of sampling. For each part of the syllabus,
some topics are proposed for specific study, teachers being asked to select
some of these, according to their students’ particular interests. This change
offered a possibility for less abstract and traditional mathematics.

More recently, general instructions have been given in all mathematical cur-
ricula in order to favour applications to different disciplines and discussions
about modelling as often as possible. Again, these instructions have had dif-
ferential effects and varied success. For instance in the curriculum of the sci-
entific (S) strand, the exponential function was traditionally introduced as the
inverse of the logarithm function. It is now demanded to introduce the expo-
nential function at the beginning of the academic year, for improving the co-
herence between mathematics teaching and sciences teaching. The introduc-
tion of the exponential function is made, starting from the differential equa-
tion f'=kf, whose study “can be justified by one or two examples, for instance
radioactivity treated in physics, or by the search for differentiable functions f
such that f{x+y)=f{x)f{v)”. In order to support this introduction, the accompa-
nying document presents a text, which is the fruit of a common work of the
groups of experts in mathematics, physics and biology.

As we have seen, mathematical teaching in France tends to be less abstract
and to present more applications and modelling. We will now present exam-
ples of analyses and experiments we have made in two different types of re-
search work.

2.1 Examples of relations with physics
Vectors and forces

One interesting bridge between mathematics and physics in secondary educa-
tion concerns the relation between vectors and forces. The notion of vector
emerged in the middle of the nineteen century from different concerns involv-
ing purely mathematical problems as well as questions in physics (mostly
electromagnetism) (Crowe 1967 and Dorier 2000). Vector is therefore by na-
fure a concept in relation to both disciplines. How is this duality seen through
teaching in mathematics and physics?
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In mathematics, very few examples from physics are presented. Vectors re-
main essentially a tool for geometry and the teaching tends to focus on their
algebraic properties. On another hand, vectors are a model of the concept of
force in physics. However, various studies have shown that, although a force
is characterised by a magnitude and a direction, tasks given in physics focus
on the magnitude only (Genin et al. 1987 and Lounis 1989). Moreover a force
is also attached to a point where the force is applied while a mathematical
vector is invariant by translation. This duality is a source of difficulty for stu-
dents.

We will not present here all the results of our analyses (Ba 2008, Ba et Dorier
2007 and to appear), but we will focus on a specific situation. This concerns a
problem in physics (dynamics) designed in order to make the determination
of the direction of a force essential for its solution.

Here is the text of the problem:

An iron small ball (comparable to
a point M) with mass m is hung
. Ceiling to the ceiling by a thread (whose
'\ mass will be neglected).

! A magnet attracts the ball, the
o direction of the force makes an
: angle 6 under the horizontal line
' (see drawing) and its magnitude
Horizontal isF.

‘ When in equilibrium, the thread
> makes an angle o with the verti-
cal (see drawing)

The only forces are: the weight of
the ball, the attraction of the
magnet and the tension of the
thread.

Figure 1
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Data: m=200g , 6=30° , F=2N, take g=10N/g.

1. Write the equilibrium equation.
2. Represent with the scale (1cm=1N) the forces in action.
3. What are the characteristics of the tension of the thread?

We now give the answers:

1. The equilibrium equation is given by the first fundamental law of dy-
namics:

F+P+T =0

Ceiling

M Horizontal

. N
300
\\ T~
= | 30°
P

A .
N, -
\,
\,
\, .
\,

N PiF
Figure 2
3. With use of relations in an isosceles ftriangle, it is easy to see that T

makes an angle of 30° with the vertical and has a magnitude of 2 \E N.

The mterestmg point in this problem is that in question 2, one has to draw F

and P first in order to draw T as the opposite of their sum. Then T gives the
direction of the thread.
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Therefore in order to draw the thread, one has to use the sum of two vectors,
which is the essential key to the problem.

However, this task is problematic in the context of physics. Indeed, the con-
struction of question 2 has to take place in a mathematical model, which is
not reality. Moreover, in this model the point where the thread is attached to
the ceiling can only be determined at the end of the process. Once this theo-
retical construction is made, one can come back to the drawing representing
the reality and use the results of question 3 to represent the situation starting
with the fact that the thread makes an angle of 30° with the vertical.

We have submitted this problem both to students and teachers in Premiere S
(second scientific class of upper secondary school, age 15).

The students, tested in the physics class, did not have any problem with ques-
tion 1. But they met real difficulties in question 2. They could not transfer the
problem into the mathematical model. As a matter of fact, they did not see
that there were two levels in the representation of the situation. On the other
hand different studies show that students at this level have acquired sufficient
knowledge about vectors to be able to draw the sum of two vectors and to
answer questions like question 3, when given in a purely geometrical setting.
This shows that students have sufficient competence in mathematics but are
not able to mobilise it when necessary in physics. Moreover, they do not iden-
tify the mathematics at stake in a physics problem. The difficulty here is typi-
cal of modelling situations.

We asked physics teachers if they would give such a problem to their stu-
dents, and if so what difficulty they think would appear. Massively, they ad-
mitted that this problem was close to a typical situation of dynamics, but at
the same time they felt uncomfortable with the formulation. They did not be-
lieve that their students would handle the geometrical construction. For the
solving of question 3, they also massively prefer a solution using projections
on two orthogonal axes, which is a technique widely used in physics.

Mathematics teachers, on the other hand, would not be ready to give such a
problem to their students because they do not consider it as part of mathemat-
ics. Moreover, the physics notions at stake are only taught one or two years
after the sum of vectors is studied in mathematics.

—_
n
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This problem appears to be typical of the difficulty in building a bridge be-
tween mathematics and physics even when two notions are naturally related
like vectors and forces. Teachers of both disciplines do not want to take
charge of the link between the two and students cannot transfer their
knowledge from one to the other. Only a joint effort from teachers of both
disciplines can solve the problem. We are now working in this direction try-
ing to build a teaching sequence involving the teachers of the two disciplines.
However, we not only have to fight against reluctance to collaboration, but
also to solve some difficult epistemological questions regarding modelling. It
is also necessary to reduce the cultural gap between the two disciplines.

3. Translatory and rotating movement and translation and rotation

Another part of physics related to mathematical notions concerns translatory
and rotating movements. The question is quite different from the previous
case of vectors and forces. Indeed, here, the relation between physics and
mathematics seems more obvious, since the same terms are used but, on the
other hand, it is more mysterious, at least for what concerns translation. In-
deed, it is well known that geometrical transformations are cognitively at-
tached to dynamical representations. A mathematical transformation only
takes info account an initial and a final state (i.e. an element and its image),
but one often implicitly attaches an idea of movement between those two
states. In this sense, the effect of a rotation on a geometrical object can be
seen as a rotating movement of the object. This representation of a geomet-
rical rotation is coherent with the concept of rotating movement in physics.
However it is quite different with translation, since the dynamical representa-
tion of the translation of a geometrical object is attached to rectilinear transla-
tory movement only and does not take into account all the other types of
translatory movement studied in physics.

Indeed, in physics an object is said to have a translatory movement vwwhen any
segment attached to the solid remains parallel to itself during the movement
(def.1). Therefore, the trajectory of the object can be non-rectilinear, but fol-
low any type of curve:
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Figure 3

Experiments have been made involving mathematics and physics teachers
about their representation of a translatory movement, and it shows that most
mathematics teachers only think of rectilinear translatory movement and are
totally puzzled when physics teachers try to explain what is a translatory
movement by showing a movement with their hand following a non-
rectilinear trajectory, yet with the hand remaining parallel to itself (Gasser
1996).

Another puzzling question is that most French physics textbooks (at the level
of Premiére S), in the chapter introducing the definition of a translatory
movement as given above, also give illustrations with objects on which vec-
tors are drawn (like on the figure above), although the definition only mention
segments. Indeed, the objects are always supposed not to change their shape
during the movement, therefore a segment [M,N] on the solid cannot change
its length. In a translatory movement any segment remains parallel to itself.

So vector MN can have only two opposite directions, and cannot change
length. Thus, according to a basic continuity principle, it is clear that vec-

tor MN cannot change its direction (because it would have to go from one di-
rection to the opposite without being able to have any intermediary positions
in between). Having the same direction and the same length it, therefore, re-
mains identical.

In other words, a translatory movement can be characterised by the fact that
every vector on the solid remains identical (def.2).
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One can wonder why such a formulation is never used in physics, while vec-
tors appear in practically all drawings. Certainly, the fear for being too ab-
stract is the main reason.

This is the first proof of the distance separating physics and mathematics. Let
us now see what the connection between translatory movements and mathe-
matical translation can be and why this is neither explicit in physics nor in
mathematics teaching.

Let us introduce the time in the notation, what physics teachers usually do not
do at this level in order to avoid absfraction and formal notation. For each
value 7 of [0,7] (the duration of the movement) and any point M of the solid
S, one calls M(t) the position of the point M at time t. Then the definition of a
translatory movement becomes:

A solid S has a translatory movement if, for any ¢, ¢’ of [0,7]
and M, Nof S, M(t)N(t)=M(t")N(t") (def.3)

In terms of translation the condition can be expressed by:

A solid S has a translatory movement if, for any M, N of S, there is a
translation ey (independent of the time) such that for any ¢ of [0,7] :
T (M(1)) = N(t). (def.d)

Of course Ty is the translation of vector MN . This is a first characterisation
of a tanslatory movement using the mathematical notion of translation.
Moreover, if one applies what is sometimes known as the parallelogram rule
(ie. M(f)N(t)=M(t")N(t") is equivalent to: M()M(t")=N(t)N(t")),
one gets another characterisation of a translatory movement using the mathe-
matical notion of translation:

S has a translatory movement if, for any ¢, #’ of [0,7] there exists a
translation 1, (independent of the point) such that for any M of S :
T (M(t) = M(t’). (def.5)

—_
n
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The difficulty here is that this translation does not give any information about
the trajectory followed by the solid S between 7 and ¢°.

Finally, if, for distinct t and t’, one divides the preceding equality by (#°-f),
one gets:

MOM(") _ NON()
-t -t

Which becomes, when ¢’ tends to #: V,,() =V, (1), which means that at any
time during the movement all points have the same velocity.

Reciprocally, by integrating between 7 and ¢’ the equality of velocity, one gets
that: M(t)M(t' )= N(t)N(t')).

This gives another characterisation of a translatory movement that students
see in physics without any proof:

S has a translatory movement if, at any time, all points have the
same velocity. (def.6)

In the teaching of physics in Premiére S, only definitions 1 and 6 are given to
the students and no attempt to connect this to mathematical translations is
made, either in books or by teachers (according to a questionnaire sent to a
large number of teachers). Moreover, physics teachers either do no care about
this connection or simply believe that translation and translatory movement
are the same thing, while most mathematics teachers reduce translatory
movement to the rectilinear case, in accordance with their dynamical repre-
sentation of geometrical transformations.

Most students are used not to try to make bridges between physics and math-
ematics and therefore use the same word in two different disciplines without
trying to find a connection. However, they have difficulties with translatory
movements. They often get confused, for instance, between circular translato-
ry movement and rotating movement. They also have difficulties in non-
“classical” examples in making their definition operational when trying to
prove that a given movement is translatory, while they have the mathematical
skills at hand (Ba, 2003).
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This situation is not satisfactory. Especially since students have all the neces-
sary knowledge at hand to be able to understand with a minimum of time and
work the different connections we have briefly established above. Again, the
question is to know who, among the mathematics teacher and the physics
teacher, should be in charge of making the connection explicit. Making this
connection explicit would benefit physics teaching, of course, since it helps
clarifying the notion of translatory movement, but also mathematics teaching,
since it provides a use of vectors and translations in a rich context, with a
challenging use of notations. For these reasons, we think that this should be a
joint effort, either in parallel, in the mathematics class and the physics class,
or even better, in a common session with both teachers. In a research work in
progress (Ba, 2003) we are working on the design of such a teaching se-
quence and a training device in order to make a mathematics teacher and a
physics teacher work together to try it out in their classes. The implementa-
tion will then be analysed with regard to students’ work and teachers’ direc-
tion of the situation.

3.1 Examples of relations with economics

The following examples are taken from our teaching (Dorier and Duc-Jacquet
1996) at the first year of university in Grenoble to students majoring in eco-
nomics. The level of mathematical training in economics curricula in French
universities is quite varied. Although it is of a very high standard in some
prestigious universities, in the context of our experiment, it is much lower
since our students are not specialised in quantitative methods. The first teach-
ing sequence of the year is devoted to a situation designed to introduce some
ideas about mathematical modelling (Dorier, 2006).

4. Matrices and linear models of production

Matrices are tools for linear models of production in economics. However,
students usually find it difficult to deal with such formal objects and are easi-
ly overwhelmed by new definitions and rules of matrix algebra. The context
of an example from economics may help them overcome some of these diffi-
culties. In this section, we present an infroduction to matrices using an ele-
mentary example from economics. This approach experienced several times
with our students has proven to be efficient. It allows an introduction to ma-
trices as objects for stocking data in a form that helps finding the pertinent
numerical value but also facilitates computations in the model.
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The example is based on an elementary linear model of production:

A factory makes two kinds of threads 7; and 7> (the outputs) measured in
reels using wool, acrylic, work and energy (the inputs) measured in, respec-
tively, kg, kg, minutes and watts.

The production is supposed to be linear, i.e. the quantity of inputs necessary
is proportional to the quantities of output produced.

- In order to produce one reel of thread T, one uses 1kg of wool, 0.6kg of
acrylic, lhour of work and 200w of energy.

- In order to produce one reel of thread 7>, one uses 0.8kg of wool, 0.7kg of
acrylic, 50mn of work and 170w of energy.

What are the quantities of inputs necessary to produce 120 reels of 77 and 80
reels of 757

Answering this question involves several computations. We give below the
kind of reasoning necessary to find the quantity of wool necessary for the
production :

- In order to produce 120 reels of T; one needs 120x1=120kg of wool.
- In order to produce 80 reels of T> one needs 80x0.8=64kg of wool.

So altogether, one needs 120+64=184kg of wool.

One needs to compute similar figures in order to get the quantity of the other
inputs. After letting students manage these computations, blindly, one can ask
them if they can identify some recurrent figures in the computations. This
leads to the result that in order to find the quantity of each input, one needs to
multiply the coefficients for T; by 120, the coefficient for T> by 80 and add
the two results.

Once students have recognised this pattern, the teacher can explain that these
computations can be formalised via matrices.

At first one introduces the matrix of production, which recapitulates in col-
umns the quantities of inputs necessary for the production of one unit of each
output:
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Ti T

1 0.8 | wool (kg)
0.6 0.7 |acrvlic (kg)
60 50 | work (mn)
200 170/ energy (w)

A =

It is important here to explain that putting the outputs in columns and the in-
puts in rows is purely conventional (arbitrary) but that everybody has to use
the same convention.

Then the computations used in order to determine the quantity of inputs can
be symbolised by the multiplication of 4 by the uni-column matrix of produc-
tion:

(1 o08) [ 184 ) wool (ke)
06 07| {120} | 128 | aeniic (ke)
60 50 80 11 200| work (mmn)
200 170 37 600/ energy (w)

This is a first step, that allows us to introduce the notation and an elementary
example of multiplication, illustrating the ‘multiplication of a row by a col-
umn law’ in a context that gives meaning to students. In this approach, the
matrix (of production) is not only a short presentation of data easy to grasp,
but also a powerful computing tool.

Then, one can make the situation more complex:

The two kinds of thread are now used to make three kinds of material: Mj, M> and M3
(the unit is a roll).
The matrix of production is:

My My M
a_[55 8 5|n
7 4 75) T,

Give the matrix C of production of the three types of material in relation to the wool. the
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acrylic, the work and the energy needed as inputs, without referring to the intermediary
production of threads.

Here again, one needs to compute the data in a quite complex way, where it is
easy to see recurrent patterns. Once the students have computed these data
blindly, the teacher can ask to make the patterns explicit. He can then help
students recognise the ‘multiplication of a row by a column law’ and state the
rule for the multiplication of two matrices. Indeed, the matrix C can be mod-
elled by the product 4xB:

M M M
1 0.8 1.1 11.2 11 | wool (kg)
0.6 0.7 | 82 7.6 825 |acrylic (kg)

55 8 5

t 60 so0| L7 475 t 680 680 675 J work (mn)

200 170 2290 2280 2275
In this presentation, the multiplication of two matrices is therefore introduced
in a context that gives meaning to conventional rules that many students have
difficulty to accept in a purely mathematical context. It does not mean that all
difficulties are avoided, but, at least, students have a richer background, suit-
able to motivate their learning and, furthermore, to make memorisation more
efficient.

energy (w)

This presentation can also lead to an interpretation in terms of linear trans-
formations. Indeed, the first level of production can be modelled via a linear
transformation

fiqeR2_,q =flg) e R*

that gives the quantities ¢’ of inputs necessary for a production ¢ of outputs.
In other words, ¢ represents the pairs of quantities of each thread to be pro-
duced and ¢’, the quadruplet of the quantities of wool, acrylic, work and en-
ergy necessary for this production. fis a linear transformation whose matrix is
A.

Similarly, there is a linear transformation g, modelling the second level
of production:

g:peR3 _g=gp) eR?
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that gives the couple of quantities ¢ of each thread necessary for a production
of the triplet of quantities p of each material. g is a linear transformation
whose matrix is B.

In order to get the linear transformation that gives the quantities ¢’ of
wool, acrylic, work and energy necessary for a production of the triplets of
quantities p of each material, one needs to compose fand g:

fog:peR3 5 q=g@ eR2_,q =flglq)  R*
fog is a linear transformation whose matrix is the product C=4xB.

This example shows that, sometimes, purely mathematical concepts can be
introduced in a context situated outside mathematics (here economics), in
which the interpretation in terms of the other discipline gives a richer ap-
proach, suitable not only to giving more motivation to students, but also a
consistent meaning that helps learning. When introduced only with reference
to mathematics, matrices and the product of matrices may be seen as formal
objects with arbitrary rules, while in the context of linear models of produc-
tion, they appear as a suitable way to organise data referring to the model.

5. The concept of derivative in relation to the marginal function and its
link with the average function

In economics, any economic function is related to two other functions:
- the marginal function
- the average function

The marginal function is defined by economists as the function measuring the
change of the original function when its variable increases by one unit. For
instance, the marginal cost of production measures, at each level of produc-
tion, the increase of cost due to the production of one supplementary unit of
output. Similarly, the marginal productivity measures the increase of produc-
tion due to the use of one supplementary unit of input.

In other words, given any economic function f of the variable x (x being posi-
tive), the marginal function f;, is such that for any x:

Ju(x) =flx+1) - fix) or fu(x) = Afix), when Ax = 1.
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Like any economic function, the marginal function has a dimension. For in-
stance in the case of a cost of production, expressing a monetary value as a
function of a quantity produced, the marginal cost expresses a monetary value
per unit of quantity (e.g. euros per kg). Therefore the dimension of the mar-
ginal function is (dimension of f) per (dimension of x). This shows that in the

Af (x)
Ax

relation above there is a hidden division, i.e.: fiu(x) = , When Ax = 1.
Economists explain that the marginal function can be replaced by the deriva-
tive: fiu(x) =f (x). This substitution is very practical, since mathematics offers
a theoretical framework for the derivative. However, it remains quite myste-
rious how one goes from the economic definition of the marginal function to
the concept of derivative. Neither economics teachers, nor mathematics
teachers, when they have to do it, know how to make the connection clear to
their students. Our investigations, with teachers of both disciplines in second-
ary education and our analyses of textbooks show that this connection is
widely used but remains problematic. Indeed, this question is typical of the
gap that exists between the two subjects. In mathematics, functions are formal
objects and are not related to measures of quantities. Moreover, variations can
be small or big but in the concept of derivative they are infinitesimal, Ax
tends to zero. In our problem, the key is a suitable choice of units. Indeed, for
practical reasons, the units used for economic functions are such that quanti-
ties can be expressed by significant numbers, neither too small, nor too big.
One would not choose a litre as a unit when dealing with problems involving
production of petrol for instance, but rather a ton. Therefore, the units are
usually chosen in such a way that a variation of one unit can be seen as a
small variation. Under this condition, which is usually implicit, for Ax = 1,
% is not very different from f’(x) since Ax is small.

Obviously, in order to have a suitable explanation of the fact that the marginal
function can be modelled by the derivative, one needs to take into account
considerations from the economical reality (leading to a suitable choice of

Af(x) .

V()
Ax

close to its limit when Ax tends to zero). If one does not refer to the two types

of justification, one does not get a fully satisfactory explanation.

units) and from mathematics (for a small variation, the variation rate
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By definition, the average function measures the ratio of f{x) over x:
o f(x)
Julx) = ——.
X
For instance, the average cost of production measures, at each level of pro-
duction, the average cost of one unit of production or the average productivity
measures the average quantity of output produced with one unit of input. Like

the marginal function the average function has as its dimension: (dimension
of f) per (dimension of x).

Therefore, these two functions can be compared, and indeed, there are some
interesting economic results in their comparison. The most classical of these
is that when the marginal function is smaller than the average function, the
average function decreases, and vice versa, when the marginal function is
greater than the average function, the average function increases. Further-
more, when the two functions are identical, the average function has reached
an optimum.

This result can be illustrated by a very intuitive example. Let us consider a
basket-ball team, and define f such that:
f{n) = sum of heights of all n players.

If a new player joins the team, his height is the marginal height f.(n). If he is
taller than the average height of the team, the average height of the team will
increase, if he is smaller, it will decrease, and if he has exactly the average
height, the average height will remain identical.

This example deals with discrete values of the variable, therefore it is not
quite correct in terms of the model, yet, it gives an interesting intuitive illus-
tration of the theorem, easy to memorise.

This theorem is taught in economics, using mathematical results on the deriv-
ative and illustrated with economic examples. The mathematical demonstra-
tion is simple; it lies on the following result, using the derivative of a quotient
of two functions:

}_f(r}
X

S (X) = frp(x)

2
X X X b

' | f(x
Ju (x) = (f(x)] = xf(x) - f(x) _
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Since x is positive, the sign of the derivative of the average function is the
same as the sign of the difference: f.(x)- fifx). The theorem can be then easi-
ly deduced from this result.

However, an illustration, if not a proof, can also be given in a graphical con-
text. Indeed the derivative measures the slope of the tangent to the curve, and
the average function measures the slope of segment [OM], where M is the
point of the curve with abscissa x: M = (x, f{x)).

|

Figure 4

On this figure, we have represented a function f; and the corresponding mar-
ginal and average functions below. The graphs/curves representing f, and fis
can be drawn by reading information from the graph of .

There are three specific points: A,B and C, on the curve representing f, corre-
sponding to the three points A’, B” and C’ on the curve of f;, and/or fis.
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e Aisan inflexion point of the curve of £, i.e. the tangent crosses the curve,
which changes its concavity in A. This corresponds to an optimum (here
a maximum) of the derivative (or the marginal) function.

e B corresponds to the point, where the tangent to the curve representing f
passes through O. Therefore, the marginal function equals the average
function in b (abscissa of B”). The fact that the secant [OM] is tangent to
the curve in B, also means that the slope of [OM] reaches its maximum
in B. Therefore, the average function reaches its maximum in b, the ab-
scissa of B’ (or B). Before b, the slope of [OM] is smaller than the slope
of the tangent, after b, it is bigger. Here, we have an intuitive graphical
proof of the theorem of comparison between the marginal and the aver-
age functions.

e C corresponds to the maximum of the function f; it marks the change of
sign of /~°, the marginal function.

With students entering university, majoring in economics, mathematics
teachers can use the context presented here in order to make a rich activity
dealing with basic notions about functions and the concept of derivative, us-
ing graphical, algebraic and formal aspects, in relation to an economic inter-
pretation. In France, the notion of derivative is taught in the last but one year
of upper secondary school. However, very often, students entering university,
especially if they do not come from the scientific section of upper secondary
education, still have difficulty with this notion. The main idea here is to build
bridges, not only between mathematics and economics but also between dif-
ferent seftings at stake within mathematics. Several didactical studies have
proven that cognitive flexibility is an important issue for the learning of
mathematics. It is essential that students be able to interpret a result in graph-
ical, algebraic or formal settings and to make connections between these set-
tings.

In our example, after introducing the notions of marginal and average func-
tions, in relation to the definitions seen in economics, with formal and alge-
braic mathematical interpretations, the teacher can start with the graphical
representation, using a similar figure as above, asking the students to draw the
shape of the curve representing the marginal and the average functions. The
theorem on the comparison of the average and the marginal functions can be
deduced from this specific example. Moreover, it can also be illustrated by
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the example of the basket-ball team. Then, the formal algebraic proof can be
requested from the students.

We have experimented with such a didactical design several times with our
students. It is striking how students who have a reputation for being reluctant
to any formalism in mathematics are able to produce a correct formal proof of
this theorem at the end of the instructional sequence.

Like in the example with matrices, the economic context offers a rich back-
ground in order to work with mathematical concepts. It helps giving more
meaning and making interesting connections.

6. Conclusion

As we said in the introduction, the teaching of mathematics is subject to a
social pressure that requires more applications and raises issues about model-
ling. The outside world forces mathematics to come out of its ivory tower.
This is true for all levels of education in any context. However, it is even
more essential for students whose major interest is outside mathematics. It is
not possible anymore for mathematicians to remain isolated, away from ap-
plications, in a position of superiority. This is the best thing that could have
happened to mathematics, which needs to become more visible. Our belief is
that mathematics will not sell its soul by getting more interested in other dis-
ciplines. We hope to have shown with the few examples that we have
sketched in this short paper, that by connecting itself to outside contexts,
mathematics can be taught in a richer way, without reducing the value of its
concepts. As we have shown in various ways in our four examples, the con-
nection with other disciplines is also a way of making the formal aspect of
mathematics accessible. Using a context issued from another discipline is not
only a question of psychological motivation, but also an epistemological chal-
lenge. Indeed, using an example from another discipline, is not only a (fash-
ionable) way to motivate students, but it is also a way to present a richer con-
text where issues on the meaning of mathematics will automatically be ad-
dressed and questioned. This is not just an abdication of supremacy, but a
humble recognition of the power of mathematics as a provider of models to
other disciplines which has always been an essential part of its history.
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