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Resumen: En los últimos años, el cálculo de la reforma ha utilizado la computadora 

para mostrar gráficos visuales dinámicos y para ofrecer un poder de cálculo 

numérico y simbólico antes inimaginable. Sin embargo, la tecnología disponible 

tiene un potencial mucho mayor para permitir a los estudiantes (y matemáticos) dar 

sentido a las ideas. Un enfoque sensato del cálculo se basa en la evidencia de 

nuestros sentidos humanos y utiliza estos conocimientos como una base 

significativa para varios desarrollos posteriores, desde el cálculo práctico para 

aplicaciones hasta desarrollos teóricos en el análisis matemático e incluso hasta un 

enfoque lógico en el uso de infinitesimales. Su principal ventaja es que no necesita 

basarse inicialmente en conceptos que se sabe que causan dificultades al estudiante, 

sino que permite que las ideas fundamentales del cálculo se desarrollen de forma 

natural a partir de orígenes sensibles. 

Palabras clave: Cálculo, tecnología, estudiantes, gráficos. 

Abstrac: In recent years, reform calculus has used the computer to show 

dynamic visual graphics and to offer previously unimaginable power of 

numeric and symbolic computation. Yet the available technology has far 

greater potential to allow students (and mathematicians) to make sense of 

the ideas. A sensible approach to the calculus builds on the evidence of our 

human senses and uses these insights as a meaningful basis for various later 

developments, from practical calculus for applications to theoretical 

developments in mathematical analysis and even to a logical approach in 

using infinitesimals. Its major advantage is that it need not be based initially 

on concepts known to cause student difficulty, but allows fundamental ideas 

of the calculus to develop naturally from sensible origins.  
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Introduction 

This presentation reveals my current thinking on the nature of 

calculus, based on the ways that we humans naturally think about the 

ideas. In particular it considers how we develop through our 

perceptions, operations and use of language to formulate increasingly 

sophisticated ideas. I suggest that this involves three distinct forms of 

mathematical thought, one growing from our natural perceptions, one 

from the actions that we perform and translate into symbolic 

computation and manipulation, and one in which we formulate logical 

definitions and develop the structures of formal proof.  (Tall, 2004, 

2008), 

This is part of an ongoing development that I began in thinking 

about the calculus over 35 years ago (Tall, 1975) and, while some 

ideas are long established, other significant advances are presented 

here for the first time. These involve an analysis of how our ideas 

depend on our previous experience within a global theory of cognitive 

development from early childhood to research mathematics. This 

affects not only students who are learning analysis, but also we 

‘experts’ who view mathematics from our own viewpoint which we 

may share with our particular expert community. We need to clarify 

precisely what we would desire students to learn and the development 

that is possible for students in our current technological age. 

Culturally, the calculus is the product of thousands of years of 

evolution that have shaped its current form. This includes the early 

methods of the Greeks to compare areas and volumes, through the 

‘prime and ultimate ratios’ of Newton and the infinitesimals of 

Leibniz, on to the formal epsilon-delta definitions and proofs of 

mathematical analysis. Various constructs have changed meaning 

over time, for example dy/dx originally meant a quotient of lengths to 
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Leibniz, but now it is re-interpreted as a limit that makes the meaning 

more subtle. Here I will return to the idea of dy/dx as a quotient of the 

components of the tangent vector. 

The limit concept has proved to be an excellent foundation for 

mathematical analysis at the highest level. However, we now know 

from our own experience and many research studies that it is a source 

of cognitive difficulties for students. My quest is for a ‘sensible 

approach’ to the calculus that begins in naturally perceived 

phenomena and flowers into a knowledge structure of great power in 

applications including the foundation for more subtle mathematical 

developments at a later stage. 

As a schoolboy I absolutely adored the beautiful book on 

Elementary Calculus by Durell and Robson (1934), working 

assiduously through its visionary presentation, doing every problem 

over a three-month period and finishing it triumphantly at 3pm on 

Christmas Day 1956: it was probably the best Christmas present I ever 

had. As an undergraduate at Oxford in 1960, I struggled with 

Mathematical Analysis, initially finding it almost impenetrable, 

though on reviewing my notes it began to make sense and I scored the 

highest mark on the analysis paper of all Oxford mathematics 

students. If I had found it so difficult, what had happened to everyone 

else? The contrast between the two experiences was dramatic. How 

could calculus give me so much joy when analysis was so problematic 

for the most successful students in a most prestigious university? 

Subsequently, as a mathematician I appreciated the power of the 

limit concept and the precise formal theorems that could be deduced 

from it. Later, as a mathematics educator, I lamented the loss of the 

natural beauty of the ideas of calculus that had given me so much 

personal joy. 
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My objective is not to produce a watered-down version of 

mathematical analysis ‘made simple’ for students who struggle. As a 

mathematician I seek to develop fully functional mathematical 

thinking, including precise mathematical definitions and proof. As an 

educator, I consider it essential to present the ideas in a sequence that  

 

makes sense to students, including those who study the subject for 

its use in applications without any desire to follow it into more 

advance pure mathematical studies. 

This does not mean looking at mathematics from the viewpoint of 

an expert (which the learner is as yet unlikely to share) and ‘talking 

down’ the ideas in an ‘intuitive’ way. My quest is to seek a ‘built up’ 

viewpoint, carefully designed to reach the subtleties of mathematics 

from the viewpoint of the learner. To do this requires more than 

mathematics alone and more than the viewpoint of the learner, it 

requires a complementary blending of both. 

The reform of calculus teaching has been considered around the 

world for many years now. However, after reform projects have 

attempted a range of different approaches using technology, what has 

occurred is largely a retention of traditional calculus ideas now 

supported by dynamic graphics for illustration and symbolic 

manipulation for computation. In this presentation I consider the 

theory and practice of a sensible approach to the calculus which builds 

on the natural viewpoint of the student and offers a conceptual 

foundation for more sophisticated development. 

Where do we begin? 

The first question is to ask where we begin in the quest to blend 

together mathematics and human development to build a theory of 
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calculus that fits together naturally for the human learner. 

Mathematicians already have a sophisticated view of the limit concept 

and its use as a foundation for modern mathematical analysis. The 

consequence is that the limit concept is often introduced to beginners 

in terms of intuitive ideas of ‘as near as we please’ or ‘for sufficiently 

large n’.  Meanwhile, other previous experiences, such as the notion 

of a tangent in Euclidean geometry, give the intuitive idea that a 

tangent ‘touches the curve at one point and does not cross it’in a way 

that is problematic in the calculus. 

To ‘make sense’ of the concepts of the calculus, including the 

notion of continuity, limit, tangent, derivative, and so on, we need to 

consider how we, as individuals, think about these ideas. The first 

thing to do is for the reader to reflect for a moment and write down 

what she or he thinks these calculus concepts actually mean. Not just 

their definitions, but how we might describe the meaning of the ideas 

and their relationships in a way which makes sense to us, as 

individuals, and how these ideas might make sense to a student. 

When I present these ideas in a workshop, I invite members of the 

audience to talk to one another for a time, to write down what they 

mean to them as individuals and how the ideas are related: 

Function, continous function, limit, tangent, derivative. 

If you do this now, you will be able to look at what you have written 

and compare it explicitly with the sensible approach to calculus 

presented here. 

Human perception 

In the book A Mind So Rare, Merlin Donald (2001) analyses the nature 

of human consciousness and proposes that consciousness occurs at 
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three levels that he suggests are: 

1. selective binding to give a thinkable concept (around 

1/40th of a second), 

2. short-term awareness monitoring change (two to three 

seconds), 

3. extended awareness over long periods of time using 

language, symbols, pictures etc to build coherent 

knowledge structures. 

The first two of these relate particularly to the fundamental ideas of 

the notion of change and rate of change in the calculus. The operations 

in the brain take a specific small time to put together and we are not 

capable of perceiving changes that occur in arbitrarily short periods or 

arbitrarily small quantities, although we can use extended awareness 

to imagine them. The perceptual idea of continuity involves a short-

term awareness monitoring change. It is only through the third level 

use of extended awareness that we can build up a coherent 

mathematical knowledge structure for a more formal concept of 

continuity. 

Preliminaries 

When students begin to study the calculus, their success depends on 

their previous experience and current knowledge. This should include 

the conception of a function defined on a specific domain and giving 

a specific output  for a specific input x in the domain (see, 

for example, Tall, McGowen & DeMarois, 2000a, 2000b).  This is 

essential to formulate the numerical approximation to the slope as 

 and to be able to manipulate such 

expressions to understand the derivation of the general rules for the 

  y = f (x)

  ( f (x + h) - f (x)) / h



                                               DAVID TALL  

87 

 

calculus. It is also assumed that the students can interpret the graphs 

of functions such as simple polynomials, rational functions, 

trigonometric functions and the relationship between powers  

and logarithms log ( )bc a= , as appropriate. 

Perceptual Continuity 

 

A naturally continuous graph 

The perceptual notion of continuity is based on the idea of drawing a 

curve with a pencil in a stroke of the hand without taking the pencil 

off the paper. We can see it at level 1 as a whole gestalt which we 

recognise as being in one piece without any gaps, in a single pencil 

stroke. At level 2 we can imagine our finger tracing along it over a 

short period of time. 

The question is: how do we formulate this in a way that transforms 

the ‘natural’ experience to the formal definition? The answer lies in 

stretching it horizontally on a computer screen.  

 

The graph will stretch off screen, but the viewer will see only the 

 a = bc
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displayed part. 

 

Then continue stretching the curve, looking only at the part on the 

screen. 

 

Until the visible part on the screen is pulled flat: 

 

We now say that a graph is ‘naturally continuous’ if, maintaining the 

same vertical scale and increasing the horizontal scale, the visible part 

of the graph in a fixed window eventually pulls flat. 
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This natural process has a formal counterpart. Imagine a picture of 

a graph on a high resolution screen, and suppose the middle point 

 on the graph lies in a pixel of height  in the picture, 

then to ‘pull the graph flat’ (that is so that it lies in the horizontal line 

of pixels) it is necessary to find a value  such that whenever x 

lies between  to  then  lies in the horizontal line 

of pixels between  and . This is precisely the 

formal epsilon-delta definition. 

 

My experience is that serious mathematicians are concerned about the 

validity of this kind of ‘natural’ approach. Surely the argument is an 

intuitive picture that does not give the full force of formal continuity. 

Does it work for more general cases, such as a function defined only 

on the rationals, or for some weird function such as 

0 for  irrational,
( )

1  if  is rational, in lowest terms.
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This function is continuous on all irrational points and discontinuous 

at every rational.  

 

A very discontinuous function that is continuous at every irrational 

point 

Despite the unusual picture, the graph satisfies the definition. It ‘pulls 

flat’ for any window centred on an irrational (since for given  

one can find an interval excluding any rational m/n for which 

). However, it does not ‘pull flat’ for any rational. 

Continuous functions defined only on rationals can also have 

‘gaps’, such as 

 

This clearly has a disconnected jump either side of , but the 

graph is not defined at this point. Everywhere that the function is 

defined, the graph will pull flat. 

 e > 0

  n >1/ e

  

f (x) =
1 if  x2 > 2,  

0 otherwise. 

ì
í
î

  x = Ö2
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A function continuous on the rationals that has gaps in the graph 

The question arises as to whether considerations such as these are 

relevant for the average student taking elementary calculus. My 

response is absolutely not. They are ideas relating to the nature of 

mathematical analysis with precise set theoretic ideas of concepts such 

as formal limit, completeness, connectedness and so on. 

For a student starting the calculus, it is natural to draw graphs as 

curves on paper with a pencil or on a screen with a pixel where points 

have a finite size. In this case a graph is drawn from some value of 

 and moves smoothly to an endpoint . If the graph is 

drawn over a closed interval , the physical drawing does not 

consist only of the abstract points , it covers the points with 

a pencil line of finite thickness. 

For a given pencil, choose a value of  sufficiently small so 

that when a point is marked at a point  it also covers a small 

square width , height . A formally continuous graph can 

then be drawn physically as follows. For the given value of , find a 

value , such that for any for t in the interval centre x, width , the 

value of  lies in a vertical range with centre  and total 

height . If  is larger than , then replace its value by , and then 

 x = a  x = b

  [a,b]

  (x, f (x))

 e > 0

  (x, y)

 x ± e  y ± e

  f (t)   f (x)
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the rectangle of width 2 , height 2  will be covered by the mark 

made by the pencil point. Draw successive rectangles at steps 2  

apart, each with its middle point centered on the graph. Place the 

pencil point over successive rectangles and drag it along the curve to 

draw a dynamically continuous graph. By using a finer pencil and a 

corresponding value of , this can be done for any size pencil, 

however small it may be. 

 

These relationships between natural continuity and the formal 

definition are not part of elementary calculus. They offer a natural 

transition from elementary calculus to mathematical analysis. For the 

initial teaching of the calculus, their purpose is to convince the teacher 

that these ideas offer a proper transition from calculus to analysis in 

which the naïve idea of natural continuity can provide a sound 

cognitive basis for later formalism. 

Perceptual limits 

The idea of a sequence of points ‘getting close’ to a limit point or a 

sequence of graphs ‘getting close’ to a limiting graph both create the 

possibility of cognitive obstacles which cause deeply-held beliefs that 

are considered difficult to remediate. In particular, the idea of a 

sequence of numbers tending to a limit often gives a view of a variable 

quantity that is ‘arbitrarily small’ so that the number 0.999… is 
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conceived as ‘just less than one’ rather than precisely equal to one. 

The symbolic and visual aspects of convergence are here in conflict. 

While it is evident that the no term of this particular sequence of 

decimal approximations is ever equal to the limit, visually if one plots 

the points physically on a line, then they are soon indistinguishable 

from the limit. This can be seen more generally in a dynamic picture 

where a sequence of points , , … tend to a limit a. As they are 

added successively to a picture, the marked points eventually become 

indistinguishable from the limit a. When one focuses on the latter 

points, by successively removing ,  , …, what is left reveals that 

after a certain stage all the later approximations are indistinguishable 

to our human eyes from the limit a. 

 

A sequence of points tending to a limit a 

    

Removing the initial points until the terms are indistinguishable 

from a 

What is important here is to see the limit and then to see the later terms 

of the sequence become indistinguishable from this limit. 

Numerically, beginning calculus students have been operating in 

a ‘good enough’ world of arithmetic. The sequence 3.1, 3.14. 3.141, 

  
a

1   
a

2

  
a

1   
a

2
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3.1415, … tends to π in the sense that various approximations, such 

as 3.14, 3.1412,  are ‘good enough’ to be indistingishable from π 

in a given practical context. 

Perceptual tangents 

Our previous experience of tangents in geometry give us specific 

insights that colour our notion of tangent in calculus. In geometry the 

tangent to a circle is at right-angles at the end of a radius. It appears to 

touch the curve precisely once (or esoterically in two ‘coincident’ 

points), lies outside the circle, and does not cross it. So what precisely 

is a tangent in the calculus? Does it touch a curve at a single point and 

not cross it? 

 

What is a tangent? 

Standard practice is to assume that a beginning calculus student 

‘knows what a tangent is’ and uses this idea to speak of the derivative 

as the slope of the tangent at a point. Such an approach is fraught with 

subtle difficulties if a tangent ‘touches, but does not cross’ the curve 

at a point. 

 
22

7

!"#$%#! #&!' !"#$%#! !"#$%#!'(
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If we consider various possibilities, we will find this idea causes 

conceptual difficulties. For instance, the tangent to the graph  

at a point does not ‘touch the graph at a single point’. It is identical 

with the original graph. 

The notion of ‘touching at a single point’ causes difficulty with a 

function such as 

. 

 

 

How do students ‘see’ the tangent to a curve at a point on a curve? 

In this case, the tangent at the origin coincides with the graph to the 

left, but students asked to draw the tangent at the origin, often draw a 

‘generic’ tangent that touches the graph at only one point by turning 

it at a slight angle rather than drawing the actual tangent which 

coincides with the graph to the left of the origin (Vinner, 1982). 

 y = x

  

y =
x (x £ 0)

x + x2 (x ³ 0)

ì
í
îï

!"

!#

#

"

!" !# # "

!"

!#

#

"

!" !# # "

!"

!#

#

"

!" !# # "

! "#"$%&'! "#"$
$"($ ) *

$+$%"($, ) *! "#-

./ 0102345
671/ 016

.87971405
671/ 016

93: 36"; <
=04716=

6>2; ? / >"()@) *



A Sensible approach to the Calculus 

96 

 

Even more problematic is the tangent to  at the origin. If 

it is the limit of secants drawn then the tangent may be claimed to be 

the vertical line through the origin. Students starting calculus are liable 

to produce a wide array of possibilities, including the vertical tangent, 

a horizontal ‘balance’ tangent that touches and does not cross the 

curve, or a variety of other lines that go through the origin without 

cutting through the graph itself. 

If one magnifies these pictures at the points concerned, then a 

significant clarification occurs. The first two graphs magnify until 

they ‘look straight’, whereas the third graph is not a straight line 

segment, is is a half segment pointing down and going back up. 

In this sense, the tangent to the first two graphs can both be seen 

as the formal idea of tangent at the given point, now coinciding with 

the graph in the magnified picture (because their difference is covered 

by a line of pixels, or if drawn with a pencil, by the thickness of a 

pencil-stroke.) The function  , which many claim to have a 

vertical tangent does not magnify to be locally straight, and it does not 

have a finite slope. 

This gives a different view of a tangent, a more coherent view, as 

the line that continues the motion of the curve and looks 

indistinguishable from the graph at high magnification. 

  y = x2/3

  y = x2/3
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Are these graphs locally straight at the origin? 

Local Straightness 

A graph can be seen as an object and one may trace a finger along it 

to sense it as an object. Then it is possible to slide a straightened hand 

along the curve to sense its changing slope as a natural conception. 
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Tracing a graph to see 

 and feel the graph as an object 

Sliding a hand along 

the graph to sense the 

changing slope 

Looking at a tiny part of the graph it is even possible to see the slope 

of the curve as it changes gently along its length. A simple way to do 

this is to look at a small part of the curve and place ones fingers over 

the graph on either side of it to confine one’s view to a small portion 

of the graph. Often this reveals a small portion to ‘look straight’ 

without looking too closely. A better method is to imagine using a 

small magnifying glass to magnify a small portion of the graph. This 

mental image allows one to ‘see’ the changing slope as the magnifying 

glass is moved along. 
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Moving a magnifying graph along 

the curve 

to see the changing slope 

Plotting the changing value 

of the slope 

on a computer as a new 

graph 

 

Using information technology it is possible to use software to plot the 

numerical value of the slope as a point. As this happens dynamically, 

one can see the graph of the slope function for  to stabilize on the 

graph of 2x. 

The general method, using the idea of local straightness is to begin 

with some (locally straight) graph  and draw the slope 

function which stabilizes to give a new graph representing the slope 

of the original. Let us denote the operation by D and denote the slope 

function as  (where D stands for ‘derivative’, namely the slope 

function derived from the original.) In this case, for  we 

have found . 

  x
2

  y = f (x)

 Df

  f (x) = x2

  Df (x) = x2
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This conception of the derived function originates fundamentally 

at Donald’s level 2 of short-term awareness, being set in a wider sense 

of global awareness as a theoretical concept. 

The derived function is also written as ( ) ( )Df x f x= . The 

operation can be repeated to give the derivative of the derivative as 
2( ( )) ( ) ( ).D Df x D f x f x= =  

It is important at this stage to be aware of the fundamental idea: 

 
 

The derivative function ( )f x  is the 

result of a global operation D that 

operates on the original function f to give 

the derivative function 

( ) ( )Df x f x= . 
 

With this fundamental idea in mind, it is time to relate the dynamic 

visualisation to the corresponding symbolic operation, linking human 

embodiment to mathematical symbolism to give a meaningful 

symbolic formula for the operation D in a range of different cases. 
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Direct links between visualisation and symbolisation 

The same technique is possible for , to give 

. 
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The derivative of  

The same technique and the binomial theorem for  gives 

 It is also possible to study the visualisations when n 

is fractional or negative and link the general idea of differentiation to 

what the student may know about powers. 

Once the student has a link between the dynamic visualisation and 

the symbolism it becomes more appropriate to introduce the notation: 

 

and begin to relate visualisation and symbolism for the standard 

functions. 

Looking along the graphs sine and cosine (measured in radians, 

because this gives a natural way of relating the angle to the length of 

the circumference) reveals the graph of  stabilizes as 
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3

  (x + hn )

  D(xn ) = nxn-1.

  
Df (x) = lim

h®0

f (x + h) - f (x)
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 and  stabilizes on the graph that is  

upside down revealing  . 

 

The slope of sinx is cosx and the slope of cosx is sinx upside down 

At this point one can look at the symbolism in parallel to see how the 

symbolic computation works (which is usually difficult for students 

who may have only rote-learnt the formulae. However, now they can 

see the limit and realise that the minus sign in the derivative of cosine 

x is a natural property of the derived function.) 

Moving on to the case of graphs of the form  where k is a 

constant, an investigation of the slopes of  and   reveals both 

have steadily increasing graphs, and each has steadily increasing slope 

functions. However, the graph of  has a slope graph that is lower 

than the original, while  has a slope graph that is higher. 

 

The slopes of exponential graphs 

  cos x   D(cos x)   sin x

  D(cos x) = -sin x

 k
x

  2
x

  3
x

  2
x

 3
2
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Our dynamically continuous perception can imagine k changing 

continuously from 2 to 3 suggesting that somewhere between 2 and 3 

there should be a value e such that the slope of the graph of  and its 

slope function are the same.  

By hoping that this function can be approximated by a (possibly 

lengthy) polynomial, 

 

then this must equal its derivative, 

 

Putting , using  gives  and, comparing term by 

term gives , , , …  to yield the values 

, , , … 

So 

 

Putting  gives 

 

This is easily calculated without even using a calculator to give 

 accurate to ten decimal places. 

For the expert, this approach involves hidden problems, such as 

the idea that  is given by a polynomial of unspecified length. 

However, for the student coordinating good-enough arithmetic with 

dynamically changing graphs, it offers a natural extension of previous 

experience. In particular, by personally calculating e, the student 

 e
x

  
ex = a

0
+ a

1
x + a

3
x2 + ...

  
D(ex ) = a

1
+ 2a

2
x + 3a

3
x2 + ...

  x = 0   e
0 = 1

  
a
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experiences why the later terms become so small that they become 

irrelevant. 

A sensible approach to the calculus 

We are now in the position to consider ‘a sensible approach’ to the 

calculus, based on our human perceptions (Donald’s level 1 and 2) 

which can then be analysed to produce mathematical theory (level 3). 

This involves a parallel development of conceptual embodiment 

(which involves the complementary use of human perception and 

action) and proceptual symbolism, which involves manipulation of 

symbols that arise from operations. (The term ‘procept’ denotes a 

symbol that can be used flexibly as either process or concept, and 

includes number, fraction, algebraic express, derivative, integral, and 

so on (Gray & Tall, 1994).) 

A sensible approach is based on natural continuity (where a graph 

‘pulls flat’) and local straightness (to give the concept of derivative). 

The limit concept is implicit in this development and can be made 

explicit at a later stage once the student can ‘see’ the derivative Df by 

looking along the originl graph f to imagine its changing slope as a 

new graph ( )Df x  which may be written as ( )f x . 

The Leibniz notation 

The very first definition of the derivative of Leibniz (1684) did not 

mention limits or infinitesimals. Instead, he began with the notion of 

tangent, and defined the derivative to be dy/dx where dx and dy are the 

horizontal and vertical components of the tangent. 
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The original definition of Leibniz 

He allowed dx to have any chosen value and then defined dy to be 

given by 

 

y
dy dx

BX
= 

 

where y is the abcissa and BX is the subtangent. This leads to the 

problem of calculating BX and to do this one needs to know the 

equation of the tangent. Leibniz’s solution was to imagine the curve 

to be a polygon consisting of an infinite number of infinitesimal 

straight sides. 

We can use the notion of dx and dy being the components of the 

tangent and, given the natural concept of ‘local straightness’, we now 

see that under high magnification, a tiny portion of the graph will look 

like a straight line. This means we can imagine not just the slope of 

the tangent, but the slope of the graph itself. 

!"

#
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Magnifying the Leibniz triangle 

This view enables us to see that 

( )
dy

Df x
dx

=
 

revealing the derivative function ( )Df x  as the quotient of the 

components of the tangent. These may be called differentials. A 

differential is simply the component of a tangent vector. The vector 

 is the direction of the tangent vector. 

The standard derivatives 

Using this approach, all the derivatives of standard functions , 

, , ,  can be seen. Only  remains. This can be 

done by noting the inverse relationship  and  and 

interchanging the axes. 

! "#$%&'

! "#$%&'
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  (dx,dy)

 x
n

  sin x   cos x  e
x

  ln x   ln x

  y = ln x  x = ey
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The derivative of the inverse function is found by interchanging 

the axes 

Since for  one knows 

 

so 

1
.

dy

dx x
=

 

This is possible because dy/dx is here considered as a quotient of 

components, not as a limit. 

The rules of the calculus and the need for the limit 

concept 

Having motivated the idea of the derivative as the changing slope of a 

given function, and visualised the derivatives of various standard 

functions such as sin x  and 
xe , it is time to develop general methods 

to calculate the derivatives of combinations of functions such as 

sinxe x  or 
sin xe . 
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This involves the derivation of the formulae for 

, ,  and 

, all of which can be performed by the usual techniques 

of calculating the slope from x to x h+  and considering what happens 

as h gets small. This is particularly necessary for the product and 

quotient. 

The chain rule can be calculated in the same way, but it also has 

an alternative visual meaning by representing ( )y f x= , ( )z g y=  

as a graph in three-dimensional x-y-z space where the projections on 

to the three coordinate planes represent the graphical relationships 

between the variables in pairs. The components of the tangent vector 

to the curve are ( , , )dx dy dz  and, are lengths, so we can write the 

derivative of z with respect to x as 

.
dz dz dy

dx dy dx
=

 

 

Figure 11.10: The components of the tangent vector in three 

dimensions as dx, dy, dz. 
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Writing the composite function as ( ) ( ( ))h x g f x= , the 

corresponding function notation is 

( ) ( ) ( )Dh x Dg y Df x=
 

which can also be written as 

( ) ( ( )) ( )).h x g f x f x  =
 

There is a technical point here.  The formula using the Leibniz 

notation as a ratio of components is only applicable if the denominator 

is zero, so the argument cannot be used if ( ) 0f x = , for then 

0dy = . But in this case, ( )dz g y dy=  is zero, so the chain rule 

( ) ( ( )) ( ))h x g f x f x  = .still holds because both sides are zero. 

Parametric Functions 

A similar picture can be drawn for a parametric function ( )x x t= , 

( )y y t=  by visualising the curve in t-x-y space as t varies. The 

following picture shows cosx t= , siny t=  as t increases from 0 to 

10. The projections onto the three coordinate planes show x as a 

function of t, y as a function of t and the relationship between x and y 

as the point ( ( ), ( ))x t y t  moves around a circle. 

If one draws a tangent to the curve in three space, with components 

dt, dx, dy, then these are the sides of a cuboid and one may write 

dy dy dx

dt dtdx
=

. 
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The parametric curve cosx t= , siny t=  in three-space 

with projections onto the three coordinate planes 

Because dt, dx, dy are all lengths in this interpretation, the equation is 

valid as quotients of differentials (Tall, 1992). Since dt can always be 

taken to be non-zero, the only technicality occurs when 0dx =  and 

the tangent is perpendicular to the x-axis. 
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A vertical tangent to a parametric curve 

Implicit functions 

An implicit function ( , ) 0F x y =  involving a relationship between x 

and y occurs as a naturally drawn precisely when it is possible to 

imagine tracing a finger along it. This will give a parametrization 

( )x x t= , ( )y y t=  as the point moves along in time t. In this case, 

the implicit function can be written as ( ( ), ( )) 0F x t y t =  and 

differentiated with respect to t to give ( ( ), ( )) 0DF x t y t = . 

For instance, if 

2 2( , ) 1F x y x y= + − , 

then the differentiating both sides of the equation 
( , ) 0F x y =  gives  

2 2 0
dx dy

x y
dt dt

+ =
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and, because these are equations involving the differentials as lengths, 

we can multiply through by dt to get the ‘differential equation’ 

2 2 0.xdx y dy+ =
 

When 0dx  , this can be rewritten to calculate the derivative of y 

with respect to x in a part of the graph where y is given as a function 

of x to get 

0.
dy

x y
dx

+ =
 

Differential Equations 

Differential equations are just equations involving differentials (the 

components of the tangent vector). As such they specify the direction 

of the solution curve at a point. Because a differentiable function is 

locally straight, one can approximate the graph through a point by a 

short straight line in the direction of the tangent. In the picture, the 

differential equation is 

.
dy x

dx y
=

 

A solution curve has been built by joining pieces together. To get a 

better picture, the slope of the curve given by the differential equation 

is calculated at the midpoint of the line segment. (Technically this 

gives a second order approximation to the solution curve and a much 

more accurate picture.) 
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Building a solution of a differential equation 

 by following the direction it specifies (Blokland & Giessen, 2000) 

Partial Derivatives 

For a function of two variables ( , )z f x y= , the partial derivatives 

0 0

( , ) ( , ) ( , ) ( , )
lim , lim
h h

z f x h y f x y z f x y h f x y

x h y h→ →

 + −  + −
= =

   

can be visualised in three dimensions as the slopes of the tangent plane 

in the vertical planes given by y = constant and x = constant, 

respectively. If increments dx and dy are given to x and y, and the 

resulting increment to the tangent plane is dz, then we can calculate 

  

dz =
¶z

¶x
dx +

¶z

¶y
dy
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and, clearly, cancellation of the dx and the x  are not possible as it 

would give something like dz z z=  +   and this is clear nonsense. 

I can reveal to you that this is because the notation is inadequate. What 

we should do is to look at the vertical planes that intersect the surface 

and its tangent plane. An increment dx in the vertical x-z plane will 

intersect the tangent plane in a tangent line whose vertical component 

may be denoted xdz , and similarly an increment dy gives a 

corresponding vertical increment to the tangent plane written as 
ydz . 

The equation now becomes 

yx
dzdz

dz dx dy
dx dy

= +

 

where cancellation is now possible to give 

x ydz dz dz= +
 

 

The tangent plane to a surface z=f(x,y) (Tall,  1992) 
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Integration 

I handle integration by using a slightly different notation. A practical 

calculation of the area under a graph ( )y f x=  from x a=  to x b=  

takes a partition of intermediate points 0x a= , 1x , 2x , …, nx b= , 

and defines 1k k kdx x x −= − . Usually, the points are taken in order 

with 1k kx x−  , but this is not necessary or desirable, particularly if 

one wishes to consider b a . The ‘mesh-size’ of the partition is the 

largest value of | |kdx . The Riemann sum from a to b is 

1
( ) ( )

b
n

k kk
a

f x dx f x dx
=

= 
 

As the mesh-size gets smaller, for a naturally continuous function f we 

can ‘see’ that this stabilizes to the area ( , )A a b  under the graph, 

which is often written as 

( , ) ( ) .
b

a
A a b f x dx=   

Leibniz originally used the even more economical symbol 

A y dx=   for the area which he envisaged as the sum of strips 

height y, width dx. He considered that, when x is increased by a 

quantity dx, the area A is increased by a quantity dA which is the area 

of a very thin strip width dx, height y. 
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the increase dA in area equals y dx  

The thin strip of area dA is not an exact rectangle as the top is part of 

the curved graph. However, for a continuous function, the final strip 

width dx can be taken so small that when the strip is stretched 

horizontally, then the graph will pull flat and the increase in area looks 

like a rectangle width dx, height y. 

 

Stretching a thin strip that pulls flat 

Using ‘good-enough’ arithmetic, the area is 

.dA y dx=
 

Any error that occurs because the curve is not precisely horizontal is 

contained within the thickness of the pencil line used to draw the 
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graph. 

Dividing the equation through by dx, Leibniz obtained the 

relation: 

.
dA

y
dx

=
 

If the area is measured from a different point a , the area function 

will differ by a constant c which represents the area between a and a

. The two equations 

  and 
dA

A ydx c y
dx

= + =
 

express in the simplest terms that the operations of integration and 

differentiation are essentially inverses of each other, giving the 

Fundamental Theorem of Calculus. This is an amazing compression 

of knowledge, expressing the essential connection between change 

and growth in two brief equations! 

Calculus and Analysis within a long-term framework of 

development 

In recent years, I have been combining and distilling my personal 

experiences of researching the nature of mathematical thinking to 

produce a single framework for its long-term development, which 

proves to be valid to analyse not only the development of a single 

individual (Tall, 2004, 2008), but also the development of 

mathematical thinking in history (Katz & Tall, to appear). 

The framework involves three distinct forms of mathematical 

development: 
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Three worlds of mathematics 

Each has its own modes of operation and development to such an 

extent that I specify them as three distinct mental worlds of 

mathematics (Tall, 2004): 

(1) Conceptual embodiment builds on human 

perceptions and actions, developing mental images that 

are verbalized in increasingly sophisticated ways and 

become perfect mental entities in our imagination. 

(2) Proceptual symbolism grows out of physical actions 

into mathematical procedures that are symbolized and 

conceived dually as operations to perform and symbols 

that can themselves be operated on by calculation and 

manipulation (procepts). 

(3) Axiomatic formalism builds formal knowledge in 

axiomatic systems in a suitable foundational framework 
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(such as formal set theory or formal logic) whose 

properties are deduced by mathematical proof. 

Within this framework, graphs and the notion of slope inhabit the 

conceptual embodied world of objects and their properties in terms of 

natural continuity and local straightness. The symbolic concepts of 

function and the derivative lie in the world of proceptual symbolism. 

Elementary calculus develops as a blend of the two. Meanwhile, 

mathematical analysis inhabits the axiomatic formal world which 

involves a substantial change in meaning with formal definitions 

including the epsilon-delta definition of limit. 

While the world of axiomatic formal mathematics is a working 

environment for the presentation of formal definitions and formal 

proof, it is not a suitable environment for elementary calculus which 

builds more naturally on embodiment and symbolism.  

 

Calculus and Mathematical Analysis in the Three World 

framework 
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Limitations and extensions of other theories 

At this point is is possible to reflect on other theories that each make 

enormous contributions to the development of mathematical thinking 

and yet are in need of extension or modification to provide a fuller 

insight into the conceptual growth of calculus and mathematical 

analysis. 

The APOS theory of Dubinsky and his colleagues is based on 

Piaget’s concept of reflective abstraction in which 

... a physical or mental action is reconstructed and 

reorganized on a higher plane of thought and so comes 

to be understood by the knower.    (Beth & Piaget 1966, 

p. 247). 

This is developed into APOS theory (Asiala et al. 1996), where 

ACTIONS are routinized as PROCESSES, encapsulated as OBJECTS and 

embedded in a SCHEMA of knowledge. Dubinsky’s approach uses the 

programming language ISETL and its first focus is on ACTIONS 

involving programming numerical algorithms that can be written in a 

functional manner that may then be used as mental entities (OBJECTS) 

in their own right. The graph is an afterthought, drawn only after the 

function is programmed symbolically. Cottrill et al. (1996) reported 

that students were able to conceptualise functions as processes, but 

only a few understood the formal definition of limit, and not one 

student in their study applied the formal definition spontaneously. 

There are two distinct aspects here, one is the apparent difficulty 

of conceiving of a function as a process, but not as an object; the 

second is the difficulty of the formal definition of limit. 

Conceptualizing a function as an object in APOS theory involves 

focusing on symbolism and programming the function notion to 

encapsulate a process as an as yet unconstructed symbolic object In 
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sharp contrast, the sensible approach to the derivative advocated here 

begins with an embodied operation on a visible object (the graph of a 

function f) to see its changing slope and construct a new visible object 

(the stabilized slope function Df). I hypothesize that a theory 

formulating the encapsulation of a process into an as yet unknown 

object will have less sensible meaning than the operation on a visible 

object to give a new visible object. 

The three-world framework focuses on the difficulty in making 

sense of the formal definition of a limit by placing it in a distinct world 

of operation, deducing theoretical constructs from multi-quantified 

definitions using formal proof. This is the world inhabited by 

mathematical analysis. Elementary calculus arises naturally in the 

parallel worlds of embodiment and symbolism using a visual and 

practical approach to translate concepts of change represented by 

graphs, rate of change (slope function) and cumulative growth (area) 

into symbolic manipulation of functions, derivatives and integrals. 

A very different view of cognitive growth is formulated by Lakoff 

and Nunez (2001) in their book Where Mathematics Comes From, 

claiming that all thinking is embodied, and concepts develop from 

sensori-motor structures in the brain. This  very compelling theory 

seems in harmony with a sensible approach. It builds on natural 

continuity and remarks on the clear distinction between elementary 

calculus and formal analysis in terms of the differing metaphors that 

arise from natural dynamic continuity in calculus and formal static 

epsilon-delta arguments in analysis. This is consistent with the 

distinction between the elementary worlds of embodiment and 

symbolism in the calculus and formalism in mathematical analysis. 

However, mathematicians see the nature of mathematical analysis 

in a variety of different ways. Some seek a natural approach building 
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on their previous experience. Such a developmental path can be seen 

in the earlier description of transforming the concept of continuity into 

the formal epsilon-delta definition. Other mathematicians see formal 

mathematics as a completely new start, building theorems deductively 

from the definitions, and constructing a new formal structure based 

entirely on definition and proof. 

Pinto & Tall (1999, 2001) identified a spectrum of performance in 

students studying analysis from those who give meaning to formal 

definitions from their concept imagery in what they termed a natural 

approach, to those who extract meaning from the definitions by 

learning how to handle multi-quantified statements and proving 

theorems by mathematical deduction using a formal approach. Such 

an analysis has been confirmed by Weber (2004) who added a further 

category of procedural learning in students, and other studies 

demonstrating different students successfully following either a 

natural or a formal route (Pinto & Tall, 2002, Alcock & Simpson, 

2005). 

This suggests at least two distinct routes to mathematical analysis, 

one prefaced by a natural transition from concepts such as natural 

continuity and local straightness to formal definitions, another by 

formal deductions within an axiomatic system. Whichever method is 

used, the eventual product is a knowledge structure where all the 

theorems are deduced from fundamental axioms and definitions. At 

one end of the spectrum is a knowledge structure linked to embodied 

images, at the other is a knowledge structure based on linguistic 

definitions and formal deduction. 

Núñez, Edwards, & Matos (1999) speak of natural continuity, 

based on embodiment offering a grounding for mathematics 

education, consistent with the search for a natural route from calculus 
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to analysis. They declare that mathematics is embodied, created by the 

human mind and that it cannot exist in any platonic sense outside the 

human mind. However, this is not to say that there is not a coherent 

structure of mathematics ‘out there’ to be discovered by human 

perception and reflection. 

For example, working with a simple system which starts 

somewhere, makes a single step, then another, then another, produces 

an unending sequence of distinct entities that we call 1, 2, 3, … . This 

is a natural structure that necessarily has properties, which may be 

discovered to have a specific form. Two and two is always four and 

not five. Products of numbers give composite numbers and those that 

are not composite, called primes, are in this structure to be discovered. 

Systems based on such elemental operations are not simply created by 

the human who names them, they are universal and are discovered by 

human reason. 

It is a surprise to me that the theoretical framework of Lakoff and 

his colleagues, with a significant basis in linguistics, prefers a natural 

development from sensory perceptions rather than a formal approach 

from carefully defined linguistic definitions. Formal mathematical 

thinking has an advantage over natural thinking. By selecting specific 

axioms, which may focus only on a specific aspect of a natural 

situation, such as the epsilon-delta definition of continuity, a whole 

new word of formal consequences follow which give new possible 

insights. Furthermore, formally deduced theorems from specific 

axioms may give a precise formal structure that can now be interpreted 

to give entirely new forms of embodiment, now based not only on 

sensory perception, but on logical deduction. The theorems proved 

operate not just in a specific situation, but in any context where the 

axioms hold. 



                                               DAVID TALL  

125 

 

For example,  our sensory perception cannot see infinitesimal 

quantities that are abitrarily small. However, in the formal world, we 

can speak of an ordered field extension of the real numbers (as a 

complete ordered field). Such a field must contain infinitesimals, and 

any finite quantity is uniquely expressed as a real number plus 

infinitesimal. Furthermore, the field can now be represented as a 

visual number line where it is possible to distinguish visually between 

any two elements u,v by magnifying part of the picture containing the 

two quantities by a factor 1/ ( )u v−  (Tall, 2002). Thus formal 

mathematics, built on linguistic definitions can give rise to new mental 

embodiments that can be pictured physically in a manner that has 

previously not been thought possible. 

The formulation of three worlds of mathematics encompasses 

three different modes of thinking in mathematical development, from 

human embodiment of perception and action with a parallel 

operational development in symbolism and a more sophisticated form 

of definition and deduction in axiomatic formalism. 

Elementary calculus belongs in the parallel worlds of embodiment 

and symbolism based on the perceptual ideas of natural continuity and 

local straightness. Mathematical analysis belongs in the more 

sophisticated world of axiomatic formalism where students learn to 

argue rigorously from formal quantified definitions (Tall & Mejia-

Ramos, 2004). 
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