A Sensible approach to the Calculus

David Tall
david.tall@warwick.ac.uk
University of Warwick
Coventry CV4 7AL
United Kingdom

Autor de correspondencia: David Tall

Resumen: En los ultimos afios, el calculo de la reforma ha utilizado la computadora
para mostrar graficos visuales dinamicos y para ofrecer un poder de calculo
numérico y simbolico antes inimaginable. Sin embargo, la tecnologia disponible
tiene un potencial mucho mayor para permitir a los estudiantes (y matematicos) dar
sentido a las ideas. Un enfoque sensato del calculo se basa en la evidencia de
nuestros sentidos humanos vy utiliza estos conocimientos como una base
significativa para varios desarrollos posteriores, desde el célculo practico para
aplicaciones hasta desarrollos tedricos en el analisis matematico e incluso hasta un
enfoque logico en el uso de infinitesimales. Su principal ventaja es que no necesita
basarse inicialmente en conceptos que se sabe que causan dificultades al estudiante,
sino que permite que las ideas fundamentales del cédlculo se desarrollen de forma
natural a partir de origenes sensibles.
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Abstrac: In recent years, reform calculus has used the computer to show
dynamic visual graphics and to offer previously unimaginable power of
numeric and symbolic computation. Yet the available technology has far
greater potential to allow students (and mathematicians) to make sense of
the ideas. A sensible approach to the calculus builds on the evidence of our
human senses and uses these insights as a meaningful basis for various later
developments, from practical calculus for applications to theoretical
developments in mathematical analysis and even to a logical approach in
using infinitesimals. Its major advantage is that it need not be based initially
on concepts known to cause student difficulty, but allows fundamental ideas
of the calculus to develop naturally from sensible origins.
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A Sensible approach to the Calculus
Introduction

This presentation reveals my current thinking on the nature of
calculus, based on the ways that we humans naturally think about the
ideas. In particular it considers how we develop through our
perceptions, operations and use of language to formulate increasingly
sophisticated 1deas. I suggest that this involves three distinct forms of
mathematical thought, one growing from our natural perceptions, one
from the actions that we perform and franslate into symbolic
computation and manipulation, and one in which we formulate logical
definitions and develop the structures of formal proof. (Tall, 2004,
2008),

This 1s part of an ongoing development that I began in thinking
about the calculus over 35 years ago (Tall, 1975) and, while some
ideas are long established, other significant advances are presented
here for the first time. These involve an analysis of how our ideas
depend on our previous experience within a global theory of cognitive
development from early childhood to research mathematics. This
affects not only students who are learning analysis, but also we
‘experts’ who view mathematics from our own viewpoint which we
may share with our particular expert community. We need to clarify
precisely what we would desire students to learn and the development
that 1s possible for students in our current technological age.

Culturally, the calculus is the product of thousands of years of
evolution that have shaped its current form. This includes the early
methods of the Greeks to compare areas and volumes, through the
‘prime and ultimate ratios’ of Newton and the infinitesimals of
Leibniz, on to the formal epsilon-delta definitions and proofs of
mathematical analysis. Various constructs have changed meaning
over time, for example dy/dx originally meant a quotient of lengths to
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Leibniz, but now it is re-interpreted as a limit that makes the meaning
more subtle. Here I will return to the idea of dy/dx as a quotient of the
components of the tangent vector.

The limit concept has proved to be an excellent foundation for
mathematical analysis at the highest level. However, we now know
from our own experience and many research studies that it is a source
of cognitive difficulties for students. My quest is for a ‘sensible
approach’ to the calculus that begins in naturally perceived
phenomena and flowers into a knowledge structure of great power in
applications including the foundation for more subtle mathematical
developments at a later stage.

As a schoolboy I absolutely adored the beautiful book on
Elementary Calculus by Durell and Robson (1934), working
assiduously through its visionary presentation, doing every problem
over a three-month period and finishing it triumphantly at 3pm on
Christmas Day 1956: it was probably the best Christmas present I ever
had. As an undergraduate at Oxford in 1960, I struggled with
Mathematical Analysis, initially finding it almost impenetrable,
though on reviewing my notes it began to make sense and I scored the
highest mark on the analysis paper of all Oxford mathematics
students. If I had found it so difficult, what had happened to everyone
else? The contrast between the two experiences was dramatic. How
could calculus give me so much joy when analysis was so problematic
for the most successful students in a most prestigious university?

Subsequently, as a mathematician I appreciated the power of the
limit concept and the precise formal theorems that could be deduced
from it. Later, as a mathematics educator, I lamented the loss of the
natural beauty of the ideas of calculus that had given me so much
personal joy.
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My objective 1s not to produce a watered-down version of
mathematical analysis ‘made simple’ for students who struggle. As a
mathematician I seek to develop fully functional mathematical
thinking, including precise mathematical definitions and proof. As an
educator, I consider it essential to present the ideas in a sequence that

makes sense to students, including those who study the subject for
its use in applications without any desire to follow it into more
advance pure mathematical studies.

This does not mean looking at mathematics from the viewpoint of
an expert (which the learner is as yet unlikely to share) and ‘talking
down’ the ideas in an ‘intuitive’ way. My quest is to seek a “built up’
viewpoint, carefully designed to reach the subtleties of mathematics
from the viewpoint of the learner. To do this requires more than
mathematics alone and more than the viewpoint of the learner, it
requires a complementary blending of both.

The reform of calculus teaching has been considered around the
world for many years now. However, after reform projects have
attempted a range of different approaches using technology, what has
occurred 1s largely a retention of traditional calculus ideas now
supported by dynamic graphics for illustration and symbolic
manipulation for computation. In this presentation I consider the
theory and practice of a sensible approach to the calculus which builds
on the natural viewpoint of the student and offers a conceptual
foundation for more sophisticated development.

Where do we begin?

The first question i1s to ask where we begin in the quest to blend
together mathematics and human development to build a theory of
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calculus that fits together naturally for the human learner.
Mathematicians already have a sophisticated view of the limit concept
and its use as a foundation for modern mathematical analysis. The
consequence is that the limit concept 1s often introduced to beginners
in terms of intuitive ideas of “as near as we please’ or ‘for sufficiently
large n’. Meanwhile, other previous experiences, such as the notion
of a tangent in Euclidean geometry, give the intuitive idea that a
tangent ‘touches the curve at one point and does not cross it’in a way
that 1s problematic in the calculus.

To ‘make sense’ of the concepts of the calculus, including the
notion of continuity, limit, tangent, derivative, and so on, we need to
consider how we, as individuals, think about these ideas. The first
thing to do is for the reader to reflect for a moment and write down
what she or he thinks these calculus concepts actually mean. Not just
their definitions, but how we might describe the meaning of the ideas
and their relationships in a way which makes sense 7o wus, as
individuals, and how these ideas might make sense to a student.

When I present these ideas in a workshop, I invite members of the
audience to talk to one another for a time, to write down what they
mean to them as individuals and how the ideas are related:

Function, continous function, limit, tangent, derivative.

If you do this now, you will be able to look at what you have written
and compare it explicitly with the sensible approach to calculus
presented here.

Human perception

In the book 4 Mind So Rare, Merlin Donald (2001) analyses the nature
of human consciousness and proposes that consciousness occurs at
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three levels that he suggests are:

1. selective binding to give a thinkable concept (around
1/40th of a second),

2. short-term awareness monitoring change (two to three
seconds),

3. extended awareness over long periods of time using
language, symbols, pictures etc to build coherent
knowledge structures.

The first two of these relate particularly to the fundamental ideas of
the notion of change and rate of change in the calculus. The operations
in the brain take a specific small time to put together and we are not
capable of perceiving changes that occur in arbitrarily short periods or
arbitrarily small quantities, although we can use extended awareness
to imagine them. The perceptual idea of continuity involves a short-
term awareness monitoring change. It is only through the third level
use of extended awareness that we can build up a coherent
mathematical knowledge structure for a more formal concept of
continuity.

Preliminaries

When students begin to study the calculus, their success depends on
their previous experience and current knowledge. This should include
the conception of a function defined on a specific domain and giving
a specific output y = f(x) for a specific input x in the domain (see,
for example, Tall, McGowen & DeMarois, 2000a, 2000b). This is
essential to formulate the numerical approximation to the slope as
(f(x+h)— f(x))/h and to be able to manipulate such
expressions to understand the derivation of the general rules for the
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calculus. It 1s also assumed that the students can interpret the graphs
of functions such as simple polynomials, rational functions,
trigonometric functions and the relationship between powers a = b°
and logarithms ¢ = log, (a), as appropriate.

Perceptual Continuity

A naturally continuous graph

The perceptual notion of continuity is based on the idea of drawing a
curve with a pencil in a stroke of the hand without taking the pencil
off the paper. We can see it at level 1 as a whole gestalt which we
recognise as being in one piece without any gaps, in a single pencil
stroke. At level 2 we can imagine our finger tracing along it over a
short period of time.

The question is: how do we formulate this in a way that transforms
the ‘natural’ experience to the formal definition? The answer lies in
stretching it horizontally on a computer screen.

¢ stretch >
h

orizontally

The graph will stretch off screen, but the viewer will see only the
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displayed part.

/-""'

stretch >
¢ h

orizontally

Then continue stretching the curve, looking only at the part on the
screen.

-=0
/ I
¢ stretch N
horizontally
Until the visible part on the screen is pulled flat:
o i +—— -

visible part
pulls flat’

We now say that a graph is “naturally continuous’ if, maintaining the
same vertical scale and increasing the horizontal scale, the visible part
of the graph in a fixed window eventually pulls flat.
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This natural process has a formal counterpart. Imagine a picture of
a graph on a high resolution screen, and suppose the middle point
(x,, f('x0 )) on the graph lies in a pixel of height & in the picture,
then to “pull the graph flat’ (that is so that it lies in the horizontal line
of pixels) it is necessary to find a value O > 0 such that whenever x
lies between X, = O to x, + O then f(x) lies in the horizontal line
of pixels between f(x,)= £and f(x,)+ & This is precisely the
formal epsilon-delta definition.

If x lies between
x0—0 and xo+ 90
then f(x) lies in
the line of pixels f(xo)+€
W—'W - f(XO)

Given pixel
height &

O can be found
so that ...

E Given xo X i

X0—0 xo+0

My experience is that serious mathematicians are concerned about the
validity of this kind of ‘natural’ approach. Surely the argument is an
intuitive picture that does not give the full force of formal continuity.
Does it work for more general cases, such as a function defined only
on the rationals, or for some weird function such as

0 for x 1rrational,

X)=
7@ % ifx= % 1s rational, 1n lowest terms.
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This function is continuous on all irrational points and discontinuous
at every rational.

A very discontinuous function that is continuous at every irrational

point

Despite the unusual picture, the graph satisfies the definition. It “pulls

flat’ for any window centred on an irrational (since for given € >0

one can find an interval excluding any rational m/n for which

n>1/ €). However, it does not “pull flat> for any rational.
Continuous functions defined only on rationals can also have

‘gaps’, such as

_ 1if x*>2
f(x)= ’
0 otherwise.

This clearly has a disconnected jump either side of x = \’2, but the
graph is not defined at this point. Everywhere that the function is
defined, the graph will pull flat.
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A

(—\2) (\2)

A function continuous on the rationals that has gaps in the graph

The question arises as to whether considerations such as these are
relevant for the average student taking elementary calculus. My
response is absolutely not. They are ideas relating to the nature of
mathematical analysis with precise set theoretic ideas of concepts such
as formal limit, completeness, connectedness and so on.

For a student starting the calculus, it is natural to draw graphs as
curves on paper with a pencil or on a screen with a pixel where points
have a finite size. In this case a graph is drawn from some value of
X = a and moves smoothly to an endpoint x = b. If the graph is
drawn over a closed interval [a,b], the physical drawing does not
consist only of the abstract points (x, f(x)), it covers the points with
a pencil line of finite thickness.

For a given pencil, choose a value of & > O sufficiently small so
that when a point is marked at a point (x,y) it also covers a small
square width x £ £, height y * £. A formally continuous graph can
then be drawn physically as follows. For the given value of [1, find a
value [, such that for any for 7 in the interval centre x, width [J, the
value of f(#) lies in a vertical range with centre f(x) and total
height [1. If (100 1s larger than [, then replace its value by [1, and then
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the rectangle of width 26, height 200 will be covered by the mark
made by the pencil point. Draw successive rectangles at steps 2[]
apart, each with its middle point centered on the graph. Place the
pencil point over successive rectangles and drag it along the curve to
draw a dynamically continuous graph. By using a finer pencil and a
corresponding value of [, this can be done for any size pencil,
however small it may be.

V g

pencil point  pencil drawn continuously ﬁner using a finer pencil
OVer a square OVEr curve pencil point
side-length 2

These relationships between natural continuity and the formal
definition are not part of elementary calculus. They offer a natural
transition from elementary calculus to mathematical analysis. For the
initial teaching of the calculus, their purpose is to convince the teacher
that these ideas offer a proper transition from calculus to analysis in
which the naive idea of natural continuity can provide a sound
cognitive basis for later formalism.

Perceptual limits

The i1dea of a sequence of points “getting close’ to a limit point or a
sequence of graphs “getting close’ to a limiting graph both create the
possibility of cognitive obstacles which cause deeply-held beliefs that
are considered difficult to remediate. In particular, the idea of a
sequence of numbers tending to a limit often gives a view of a variable
quantity that is ‘arbitrarily small’ so that the number 0.999... is
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conceived as ‘just less than one’ rather than precisely equal to one.
The symbolic and visual aspects of convergence are here in conflict.

While it is evident that the no term of this particular sequence of
decimal approximations is ever equal to the limit, visually if one plots
the points physically on a line, then they are soon indistinguishable
from the limit. This can be seen more generally in a dynamic picture
where a sequence of points a,, @,, ... tend to a limit a. As they are
added successively to a picture, the marked points eventually become
indistinguishable from the limit «. When one focuses on the latter
points, by successively removing a,, 4@, ..., whatis left reveals that
after a certain stage all the later approximations are indistinguishable
to our human eyes from the limit a.

o’
0...0

°
o a as as

ai

A sequence of points tending to a limit a

L [ LN .‘l .I

]
® ® L]
az a3 04 LR 03 a4 LE R LR

Removing the initial points until the terms are indistinguishable
Jrom a

What is important here is to see the limit and then to see the later terms

of the sequence become indistinguishable from this limit.
Numerically, beginning calculus students have been operating in

a ‘good enough’ world of arithmetic. The sequence 3.1, 3.14. 3.141,
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3.1415, ... tends to 7 in the sense that various approximations, such
as 3.14, 3.1412, 2% are “‘good enough’ to be indistingishable from ©
in a given practical context.

Perceptual tangents

Our previous experience of tangents in geometry give us specific
insights that colour our notion of tangent in calculus. In geometry the
tangent to a circle is at right-angles at the end of a radius. It appears to
touch the curve precisely once (or esoterically in two ‘coincident’
points), lies outside the circle, and does not cross it. So what precisely
1s a tangent in the calculus? Does it touch a curve at a single point and
not cross it?

!ll#g@! #&!I!Ilmoﬁ# !ll#?ﬁ!l(
What is a tangent?

Standard practice is to assume that a beginning calculus student
‘knows what a tangent 1s’ and uses this idea to speak of the derivative
as the slope of the tangent at a point. Such an approach is fraught with
subtle difficulties if a tangent ‘touches, but does not cross’ the curve
at a point.
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If we consider various possibilities, we will find this idea causes
conceptual difficulties. For instance, the tangent to the graph y = X
at a point does not ‘touch the graph at a single point’. It is identical
with the original graph.

The notion of ‘touching at a single point’ causes difficulty with a
function such as

x (x<0)

x+x7(x>0)

A A A g 3F-<
620100 @
10102345 \ '
&1/016 /
. o " sras
g1/016
It f $" $S * LI
I"#'S !'#-$+$%,§($ ;* g

How do students ‘see’ the ftangent to a curve at a point on a curve?

In this case, the tangent at the origin coincides with the graph to the
left, but students asked to draw the tangent at the origin, often draw a
‘generic’ tangent that touches the graph at only one point by turning
it at a slight angle rather than drawing the actual tangent which
coincides with the graph to the left of the origin (Vinner, 1982).
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Even more problematic is the tangentto y = x” at the origin. If
it is the limit of secants drawn then the tangent may be claimed to be
the vertical line through the origin. Students starting calculus are liable
to produce a wide array of possibilities, including the vertical tangent,
a horizontal ‘balance’ tangent that touches and does not cross the
curve, or a variety of other lines that go through the origin without
cutting through the graph itself.

If one magnifies these pictures at the points concerned, then a
significant clarification occurs. The first two graphs magnify until
they ‘look straight’, whereas the third graph is not a straight line
segment, 1s 1s a half segment pointing down and going back up.

In this sense, the tangent to the first two graphs can both be seen
as the formal idea of tangent at the given point, now coinciding with
the graph in the magnified picture (because their difference is covered
by a line of pixels, or if drawn with a pencil, by the thickness of a
pencil-stroke.) The function y = x*?, which many claim to have a
vertical tangent does not magnify to be locally straight, and it does not
have a finite slope.

This gives a different view of a tangent, a more coherent view, as
the line that continues the motion of the curve and looks
indistinguishable from the graph at high magnification.
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. /01A

Y

WS weg S ey

Are these graphs locally straight at the origin?
Local Straightness

A graph can be seen as an object and one may trace a finger along it
to sense it as an object. Then it is possible to slide a straightened hand
along the curve to sense its changing slope as a natural conception.
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Tracing a graph to see Sliding a hand along

and feel the graph as an object  the graph fo sense the
rhaneine clone

Looking at a tiny part of the graph it is even possible to see the slope
of the curve as it changes gently along its length. A simple way to do
this 1s to look at a small part of the curve and place ones fingers over
the graph on either side of it to confine one’s view to a small portion
of the graph. Often this reveals a small portion to ‘look straight’
without looking too closely. A better method is to imagine using a
small magnifying glass to magnify a small portion of the graph. This
mental image allows one to ‘see’ the changing slope as the magnifying
glass 1s moved along.
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slope positive

slope negative gelting steeper

petting less steep

Moving a magnifying graph along  Plotting the changing value

the curve of the slope
fo see the changing slope on a computer as a new
graph

Using information technology it is possible to use software to plot the
numerical value of the slope as a point. As this happens dynamically,
one can see the graph of the slope function for x7 to stabilize on the
graph of 2x.

The general method, using the idea of local straightness is to begin
with some (locally straight) graph y = f(x) and draw the slope
function which stabilizes to give a new graph representing the slope
of the original. Let us denote the operation by D and denote the slope
function as Df (where D stands for “derivative’, namely the slope
function derived from the original.) In this case, for f(x) = x* we
have found Df (x) = x°.
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A Sensible approach to the Calculus
This conception of the derived function originates fundamentally
at Donald’s level 2 of short-term awareness, being set in a wider sense
of global awareness as a theoretical concept.
The derived function is also written as Df(x)= f'(x). The
operation can be repeated to give the derivative of the derivative as
D(Df (x)) =D*f(x) = f"(x).

It is important at this stage to be aware of the fundamental idea:

The derivative function f'(x) 1s the
result of a global operation D that
operates on the original function fto give
the derivative function

Df (x) = f'(x).

With this fundamental idea in mind, it is time to relate the dynamic
visualisation to the corresponding symbolic operation, linking human
embodiment to mathematical symbolism to give a meaningful
symbolic formula for the operation D in a range of different cases.
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Direct links between visualisation and symbolisation

The same technique is possible for x°, to give D(x”) = 3x”
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3
The derivative of X

The same technique and the binomial theorem for (x + /") gives
D(x") = nx™" Tt is also possible to study the visualisations when 7
1s fractional or negative and link the general idea of differentiation to
what the student may know about powers.

Once the student has a link between the dynamic visualisation and
the symbolism it becomes more appropriate to introduce the notation:

S(x+n)— f(x)
h

Df (x) = lim

and begin to relate visualisation and symbolism for the standard
functions.

Looking along the graphs sine and cosine (measured in radians,
because this gives a natural way of relating the angle to the length of
the circumference) reveals the graph of D(sinx) stabilizes as
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cosx and D(cosx) stabilizes on the graph that is sinx
upside down revealing D(cosx) = —sinx.

Ay=sinx 1y =cosx

AN
'.'. K . ;;. ) . \/ "a.. ?
e o slope*s

o like cosx like -sinx

—=Y

The slope of sinx is cosx and the slope of cosx is sinx upside down

At this point one can look at the symbolism in parallel to see how the
symbolic computation works (which 1s usually difficult for students
who may have only rote-learnt the formulae. However, now they can
see the limit and realise that the minus sign in the derivative of cosine
x 1s a natural property of the derived function.)

Moving on to the case of graphs of the form £ where & is a
constant, an investigation of the slopes of 2* and 3" reveals both
have steadily increasing graphs, and each has steadily increasing slope
functions. However, the graph of 2” has a slope graph that is lower
than the original, while 3* hasa slope graph that is higher.

/ Ay=3]

tslope /
.-a.‘upt:.- J

“x

Ay=2"

The slopes of exponential graphs
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Our dynamically continuous perception can imagine k. changing
continuously from 2 to 3 suggesting that somewhere between 2 and 3
there should be a value e such that the slope of the graph of e* and its
slope function are the same.

By hoping that this function can be approximated by a (possibly
lengthy) polynomial,

X — . 2
e -a0+alx+a3x +...
then this must equal its derivative,
XN — . 2
D(e")=a +2ax+3ax" +..

Putting x = (), using e’ =1 gives a, = | and, comparing term by

term gives a, = g, 2a, =a, 3a, = a,, ... to yield the values
a,=la,=),a= [ .
So

S =l+x+x? /24 +x"/ nl+. ..

Putting x =1 gives

1 1 x"
e=]l+—+—+ +—+ .

1 2! n!

This is easily calculated without even using a calculator to give
e =2.7182818285 accurate to ten decimal places.

For the expert, this approach involves hidden problems, such as
the idea that e* is given by a polynomial of unspecified length.
However, for the student coordinating good-enough arithmetic with
dynamically changing graphs, it offers a natural extension of previous
experience. In particular, by personally calculating e, the student
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experiences why the later terms become so small that they become
irrelevant.

A sensible approach to the calculus

We are now in the position to consider ‘a sensible approach’ to the
calculus, based on our human perceptions (Donald’s level 1 and 2)
which can then be analysed to produce mathematical theory (level 3).
This involves a parallel development of conceptual embodiment
(which involves the complementary use of human perception and
action) and proceptual symbolism, which involves manipulation of
symbols that arise from operations. (The term ‘procept’ denotes a
symbol that can be used flexibly as either process or concept, and
includes number, fraction, algebraic express, derivative, integral, and
so on (Gray & Tall, 1994).)

A sensible approach is based on natural continuity (where a graph
‘pulls flat’) and local straightness (to give the concept of derivative).
The limit concept is implicit in this development and can be made
explicit at a later stage once the student can ‘see’ the derivative Df by
looking along the originl graph f to imagine its changing slope as a
new graph Df (x) which may be written as f”(x).

The Leibniz notation

The very first definition of the derivative of Leibniz (1684) did not
mention limits or infinitesimals. Instead, he began with the notion of
tangent, and defined the derivative to be dy/dx where dx and dy are the
horizontal and vertical components of the tangent.
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$#
§%

7

n .f'
The original definition of Leibniz

He allowed dx to have any chosen value and then defined dy to be
given by

dy:dxxi
BX

where y 1s the abcissa and BX is the subtangent. This leads to the
problem of calculating BX and to do this one needs to know the
equation of the tangent. Leibniz’s solution was to imagine the curve
to be a polygon consisting of an infinite number of infinitesimal
straight sides.

We can use the notion of dx and dy being the components of the
tangent and, given the natural concept of ‘local straightness’, we now
see that under high magnification, a tiny portion of the graph will look
like a straight line. This means we can imagine not just the slope of
the tangent, but the slope of the graph itself.
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0="( + "%/ -

Magnifying the Leibniz triangle

This view enables us to see that

d
Df(x)==

revealing the derivative function Df(x) as the quotient of the
components of the tangent. These may be called differentials. A
differential is simply the component of a tangent vector. The vector
(dx,dy) is the direction of the tangent vector.

The standard derivatives

Using this approach, all the derivatives of standard functions x”,
sinx, COSX, e, Inx can be seen. Only Inx remains. This can be
done by noting the mverse relationship y = Inx and x = ¢’ and
interchanging the axes.
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A H"IB%& A /M8

H’#

Y

Y

The derivative of the inverse function is found by interchanging
the axes

Since for x = ¢’ one knows

dx
—=¢e’ =x
dy

SO
dv _1
dx  x

This 1s possible because dyv/dx is here considered as a quotient of
components, not as a limit.

The rules of the calculus and the need for the limit
concept

Having motivated the idea of the derivative as the changing slope of a
given function, and visualised the derivatives of various standard
functions such as sinx and e”, it is time to develop general methods
to calculate the derivatives of combinations of functions such as
e'sinx or e,
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This involves the derivation of the formulae for
D(f(x)+g(x)). D(f(x)g(x)). D(f(x)/g(x)) and
D( f(g(x)), all of which can be performed by the usual techniques
of calculating the slope from x to x + /2 and considering what happens
as i gets small. This is particularly necessary for the product and
quotient.

The chain rule can be calculated in the same way, but it also has
an alternative visual meaning by representing v = f(x), z=g(»)
as a graph in three-dimensional x-y-z space where the projections on
to the three coordinate planes represent the graphical relationships
between the variables in pairs. The components of the tangent vector
to the curve are (dx,dy,dz) and, are lengths, so we can write the
derivative of = with respect to x as

dz dzdy
dx dydx
.“%?/
&' &
15 g s
£49).3)

I#

g

('
K& *! -

P

Figure 11.10: The components of the tangent vector in three
dimensions as dx, dy, dz.
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Writing the composite function as /A(x)=g(f(x)), the
corresponding function notation is

Dh(x) = Dg(y)Df (x)

which can also be written as
H(x)=g'(f(x)f'(x)).

There 1s a technical point here. The formula using the Leibniz
notation as a ratio of components is only applicable if the denominator
is zero, so the argument cannot be used if f'(x)=0, for then
dy =0. But in this case, dz=g'(y) dy is zero, so the chain rule
n(x)=g'(f(x))f'(x)) still holds because both sides are zero.

Parametric Functions

A similar picture can be drawn for a parametric function x = x(7),
v =y(t) by visualising the curve in #-x-y space as ¢ varies. The
following picture shows x =cos#, ¥ =SInf as ¢ increases from 0 to
10. The projections onto the three coordinate planes show x as a
function of 7, y as a function of 7 and the relationship between x and y
as the point (x(7), y(#)) moves around a circle.

If one draws a tangent to the curve in three space, with components
dt, dx, dy, then these are the sides of a cuboid and one may write

dy _dy [ax
de  dtl dr
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The parametric curve x =cost, y =sint in three-space
with projections onto the three coordinate planes

Because dr, dx, dy are all lengths 1n this interpretation, the equation is
valid as quotients of differentials (Tall, 1992). Since dr can always be
taken to be non-zero, the only technicality occurs when dx =0 and
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the tangent 1s perpendicular to the x-axis.
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AY

vertical
tangent
with
dx=()
X
dy
dx

A vertical tangent fo a parametric curve

Implicit functions

An implicit function F'(x,y) =0 involving a relationship between x
and y occurs as a naturally drawn precisely when it is possible to
imagine tracing a finger along it. This will give a parametrization
x =x(t), y= () as the point moves along in time 7. In this case,
the implicit function can be written as F(x(7),y(7))=0 and
differentiated with respect to 7 to give DF(x(7), v(7))=0.

For instance, if
F(x,y)=x"+3y"—1,

then the differentiating both sides of the equation
F(x,y)=0 gives

dx dh

2= 42y =0
dt dt
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and, because these are equations involving the differentials as lengths,
we can multiply through by dr to get the “differential equation’

2xdx+2ydy=0.

When dx # 0, this can be rewritten to calculate the derivative of y
with respect to x in a part of the graph where y 1s given as a function
of x to get

dy
x+y—=0.
Y

Differential Equations

Differential equations are just equations involving differentials (the
components of the tangent vector). As such they specify the direction
of the solution curve at a point. Because a differentiable function is
locally straight, one can approximate the graph through a point by a
short straight line in the direction of the tangent. In the picture, the
differential equation is
dv x
y'

dx

A solution curve has been built by joining pieces together. To get a
better picture, the slope of the curve given by the differential equation
1s calculated at the midpoint of the line segment. (Technically this
gives a second order approximation to the solution curve and a much
more accurate picture.)
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Building a solution of a differential equation
by following the direction it specifies (Blokland & Giessen, 2000)

Partial Derivatives
For a function of two variables z = f(x, )., the partial derivatives

& _ g SO fy) oz SOyt — ()
Ox 0 h dy 0 h

can be visualised in three dimensions as the slopes of the tangent plane
in the vertical planes given by y = constant and x = constant,
respectively. If increments dx and dy are given to x and y, and the
resulting increment to the tangent plane is d=, then we can calculate

dz=gdx+%dv
ox a -
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and, clearly, cancellation of the dx and the Ox are not possible as it
would give something like dz =0z + Oz and this is clear nonsense.

I can reveal to you that this 1s because the notation is inadequate. What
we should do is to look at the vertical planes that intersect the surface

and its tangent plane. An increment dx in the vertical x-z plane will
intersect the tangent plane in a tangent line whose vertical component

may be denoted dz_. and similarly an increment dy gives a
corresponding vertical increment to the tangent plane written as d-_.

The equation now becomes

dz dz,
dz=—=dx+—=dy
dx dy
where cancellation is now possible to give
dz=dz_+dz,
A N
tangent - dz=dz_+dz,
plane / ’ &, *

{.\'._\-’.3) i — ',.....‘......--‘ ﬂ

-~
x
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Integration

I handle integration by using a slightly different notation. A practical
calculation of the area under a graph y = f(x) from x=a to x =5

takes a partition of intermediate points x, =a, X, X,, ..., X, = b,
and defines dx, =X, —x, ,. Usually, the points are taken in order
with x,_, <x, . but this is not necessary or desirable, particularly if

one wishes to consider b < a. The ‘mesh-size’ of the partition is the
largest value of | dx, |. The Riemann sum from a to b is

D f(dx=3 f(x,)dy

As the mesh-size gets smaller, for a naturally continuous function fwe
can ‘see’ that this stabilizes to the area 4(a,b) under the graph,
which is often written as

Aab)=| f(x)dx

Leibniz originally used the even more economical symbol

A= j vy dx for the area which he envisaged as the sum of strips

height y, width dx. He considered that, when x is increased by a
quantity dx, the area 4 is increased by a quantity d4 which is the area
of a very thin strip width dx, height y.
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a dx X

the increase dA in area equals y dx

The thin strip of area dA 1s not an exact rectangle as the top is part of
the curved graph. However, for a continuous function, the final strip
width dx can be taken so small that when the strip is stretched
horizontally, then the graph will pull flat and the increase in area looks
like a rectangle width dx, height y.

A
\ stretch
horizontally
>
dA |y
a X > dx

Stretching a thin strip that pulls flat
Using ‘good-enough’ arithmetic, the area is
dA = ydbx.
Any error that occurs because the curve is not precisely horizontal is
contained within the thickness of the pencil line used to draw the
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graph.
Dividing the equation through by dx, Leibniz obtained the
relation:

—_— y.

dx
If the area is measured from a different point a’, the area function
will differ by a constant ¢ which represents the area between @ and a’
. The two equations

dA
A=\|yvdx+c and — =y
Js a_

express in the simplest terms that the operations of integration and
differentiation are essentially inverses of each other, giving the
Fundamental Theorem of Calculus. This 1s an amazing compression
of knowledge, expressing the essential connection between change
and growth in two brief equations!

Calculus and Analysis within a long-term framework of
development

In recent years, I have been combining and distilling my personal
experiences of researching the nature of mathematical thinking to
produce a single framework for its long-term development, which
proves to be valid to analyse not only the development of a single
individual (Tall, 2004, 2008), but also the development of
mathematical thinking in history (Katz & Tall, to appear).

The framework involves three distinct forms of mathematical
development:
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4 N\
Axiomatic Formal Mathematics
based on formal definitions of properties
and deduction by mathematical proof )
\.
e ™ e N
Objects Operations
& their properties & their properties
observed perceptually e.g. counting, sharing
described verbally symbolised as
defined precisely number concepts
constructed practically e.g. counting numbers, fractions
imagined as thought experiments
with relationships deduced by generalised in algebra
appropriate forms of proof as algebraic expressions using
including Euclidean geometry operations experienced in arithmetic
\. - \. J

Three worlds of mathematics

Each has its own modes of operation and development to such an
extent that I specify them as three distinct mental worlds of

mathematics (Tall, 2004):

(1) Conceptual embodiment builds on human
perceptions and actions, developing mental images that
are verbalized in increasingly sophisticated ways and
become perfect mental entities in our imagination.

(2) Proceptual symbolism grows out of physical actions
into mathematical procedures that are symbolized and
conceived dually as operations to perform and symbols
that can themselves be operated on by calculation and
manipulation (procepts).

(3) Axiomatic formalism builds formal knowledge in
axiomatic systems in a suitable foundational framework
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(such as formal set theory or formal logic) whose
properties are deduced by mathematical proof.

Within this framework, graphs and the notion of slope inhabit the
conceptual embodied world of objects and their properties in terms of
natural continuity and local straightness. The symbolic concepts of
function and the derivative lie in the world of proceptual symbolism.
Elementary calculus develops as a blend of the two. Meanwhile,
mathematical analysis inhabits the axiomatic formal world which
involves a substantial change in meaning with formal definitions
including the epsilon-delta definition of limit.

While the world of axiomatic formal mathematics i1s a working
environment for the presentation of formal definitions and formal
proof, it is not a suitable environment for elementary calculus which
builds more naturally on embodiment and symbolism.

( Axiomatic Formal Mathematics |
\ ,
i Objects ) ( Operations )
& their properties & their properties
( Graphs ) [ functions )
(natural continuity) (informal limit )
(local straightness) ( derivative )
N A AN J

Calculus and Mathematical Analysis in the Three World
Jframework
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Limitations and extensions of other theories

At this point is is possible to reflect on other theories that each make
enormous contributions to the development of mathematical thinking
and yet are in need of extension or modification to provide a fuller
insight into the conceptual growth of calculus and mathematical
analysis.

The APOS theory of Dubinsky and his colleagues is based on
Piaget’s concept of reflective abstraction in which

. a physical or mental action is reconstructed and
reorganized on a higher plane of thought and so comes
to be understood by the knower. (Beth & Piaget 1966,
p. 247).

This 1s developed into APOS theory (Asiala et al. 1996), where
ACTIONS are routinized as PROCESSES, encapsulated as OBJECTS and
embedded in a SCHEMA of knowledge. Dubinsky’s approach uses the
programming language ISETL and its first focus is on ACTIONS
involving programming numerical algorithms that can be written in a
functional manner that may then be used as mental entities (OBJECTS)
in their own right. The graph is an afterthought, drawn only after the
function 1s programmed symbolically. Cottrill et al. (1996) reported
that students were able to conceptualise functions as processes, but
only a few understood the formal definition of limit, and not one
student in their study applied the formal definition spontaneously.
There are two distinct aspects here, one is the apparent difficulty
of conceiving of a function as a process, but not as an object; the
second 1s the difficulty of the formal definition of limit.
Conceptualizing a function as an object in APOS theory involves
focusing on symbolism and programming the function notion to

encapsulate a process as an as yet unconstructed symbolic object In
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sharp contrast, the sensible approach to the derivative advocated here
begins with an embodied operation on a visible object (the graph of a
function f) to see its changing slope and construct a new visible object
(the stabilized slope function Df). I hypothesize that a theory
formulating the encapsulation of a process into an as yet unknown
object will have less sensible meaning than the operation on a visible
object to give a new visible object.

The three-world framework focuses on the difficulty in making
sense of the formal definition of a limit by placing it in a distinct world
of operation, deducing theoretical constructs from multi-quantified
definitions using formal proof. This i1s the world inhabited by
mathematical analysis. Elementary calculus arises naturally in the
parallel worlds of embodiment and symbolism using a visual and
practical approach to translate concepts of change represented by
graphs, rate of change (slope function) and cumulative growth (area)
into symbolic manipulation of functions, derivatives and integrals.

A very different view of cognitive growth is formulated by Lakoff
and Nunez (2001) in their book Where Mathematics Comes From,
claiming that all thinking 1s embodied, and concepts develop from
sensori-motor structures in the brain. This very compelling theory
seems In harmony with a sensible approach. It builds on natural
continuity and remarks on the clear distinction between elementary
calculus and formal analysis in terms of the differing metaphors that
arise from natural dynamic continuity in calculus and formal static
epsilon-delta arguments in analysis. This is consistent with the
distinction between the elementary worlds of embodiment and
symbolism in the calculus and formalism in mathematical analysis.

However, mathematicians see the nature of mathematical analysis
in a variety of different ways. Some seek a natural approach building
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on their previous experience. Such a developmental path can be seen
in the earlier description of transforming the concept of continuity into
the formal epsilon-delta definition. Other mathematicians see formal
mathematics as a completely new start, building theorems deductively
from the definitions, and constructing a new formal structure based
entirely on definition and proof.

Pinto & Tall (1999, 2001) identified a spectrum of performance in
students studying analysis from those who give meaning ro formal
definitions from their concept imagery in what they termed a narural
approach, to those who extract meaning from the definitions by
learning how to handle multi-quantified statements and proving
theorems by mathematical deduction using a formal approach. Such
an analysis has been confirmed by Weber (2004) who added a further
category of procedural learning in students, and other studies
demonstrating different students successfully following either a
natural or a formal route (Pinto & Tall, 2002, Alcock & Simpson,
2005).

This suggests at least two distinct routes to mathematical analysis,
one prefaced by a natural transition from concepts such as natural
continuity and local straightness to formal definitions, another by
formal deductions within an axiomatic system. Whichever method is
used, the eventual product 1s a knowledge structure where all the
theorems are deduced from fundamental axioms and definitions. At
one end of the spectrum is a knowledge structure linked to embodied
images, at the other i1s a knowledge structure based on linguistic
definitions and formal deduction.

Nunez, Edwards, & Matos (1999) speak of natural continuity,
based on embodiment offering a grounding for mathematics
education, consistent with the search for a natural route from calculus
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to analysis. They declare that mathematics is embodied, created by the
human mind and that it cannot exist in any platonic sense outside the
human mind. However, this is not to say that there is not a coherent
structure of mathematics ‘out there’ to be discovered by human
perception and reflection.

For example, working with a simple system which starts
somewhere, makes a single step, then another, then another, produces
an unending sequence of distinct entities that we call 1, 2, 3, ... . This
1s a natural structure that necessarily /as properties, which may be
discovered to have a specific form. Two and two is always four and
not five. Products of numbers give composite numbers and those that
are not composite, called primes, are in this structure to be discovered.
Systems based on such elemental operations are not simply created by
the human who names them, they are universal and are discovered by
human reason.

It is a surprise to me that the theoretical framework of Lakoff and
his colleagues, with a significant basis in linguistics, prefers a natural
development from sensory perceptions rather than a formal approach
from carefully defined linguistic definitions. Formal mathematical
thinking has an advantage over natural thinking. By selecting specific
axioms, which may focus only on a specific aspect of a natural
situation, such as the epsilon-delta definition of continuity, a whole
new word of formal consequences follow which give new possible
insights. Furthermore, formally deduced theorems from specific
axioms may give a precise formal structure that can now be interpreted
to give entirely new forms of embodiment, now based not only on
sensory perception, but on logical deduction. The theorems proved
operate not just in a specific situation, but in any context where the
axioms hold.
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For example, our sensory perception cannot see infinitesimal
quantities that are abitrarily small. However, in the formal world, we
can speak of an ordered field extension of the real numbers (as a
complete ordered field). Such a field must contain infinitesimals, and
any finite quantity is uniquely expressed as a real number plus
infinitesimal. Furthermore, the field can now be represented as a
visual number line where it is possible to distinguish visually between
any two elements u,v by magnifying part of the picture containing the
two quantities by a factor 1/(z# —v) (Tall, 2002). Thus formal
mathematics, built on linguistic definitions can give rise to new mental
embodiments that can be pictured physically in a manner that has
previously not been thought possible.

The formulation of three worlds of mathematics encompasses
three different modes of thinking in mathematical development, from
human embodiment of perception and action with a parallel
operational development in symbolism and a more sophisticated form
of definition and deduction in axiomatic formalism.

Elementary calculus belongs in the parallel worlds of embodiment
and symbolism based on the perceptual ideas of natural continuity and
local straightness. Mathematical analysis belongs in the more
sophisticated world of axiomatic formalism where students learn to
argue rigorously from formal quantified definitions (Tall & Mejia-
Ramos, 2004).
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